

Self-Maps and Common Fixed Points in Dislocated Quasi-Metric Spaces

Arif Rahman

College of Education

Universitas Gadjah Mada, Yogyakarta-55281, Indonesia

ABSTRACT

In this paper, a common fixed point theorem of a pair of self-maps is proved by omitting continuity requirement in dislocated quasi metric spaces. It extends and generalizes the result of Sarma et al. [5, Theorem 5] to two self-maps by employing a more generalized contraction. It further unifies the results of Dubey et al. [2, Theorem 3.1 and Theorem 3.2], and some well-known fixed point results in the literature.

KEYWORDS: Complete dislocated quasi-metric, Contraction, Common fixed point.

AMS Subject Classification: 47H10, 54H25.

I. INTRODUCTION

Dislocated topologies serves as an essential tool in view of its utility in the pursuit of developing logic programming (see [3], [4]). In 2000, Hitzler and Seda [4] proved a fixed point theorem in complete dislocated metric spaces as a generalization of the celebrated Banach contraction principle.

In 2006, Zeyada et al. [7] initiated the notion of complete dislocated quasi-metric space as a generalization of dislocated metric space, and generalized the result of Hitzler et al. [4] in such space. In 2008, Aage and Salunke [1] generalized the result of Zeyada et al. [7] by proving a fixed point theorem for Kannan type of contraction in complete dislocated quasi-metric space. Afterwards, a few papers dealt with fixed points in such space were obtained (for instance [5], [6] etc).

In 2014, Sarma et al. [5, Theorem 5] improved the result of Aage and Salunke [1, Theorem 3.3] by omitting continuity requirement, stated below as Theorem 1.1.

Theorem 1.1. Let (X, d) be a complete dq-metric space, and let $T : X \rightarrow X$ be a self-map satisfying the following condition:

$$d(Tx, Ty) \leq a \{ d(x, Tx) + d(y, Ty) \}$$

$$\text{for all } x, y \in X, \text{ where } 0 \leq a < \frac{1}{2}.$$

Then T has a unique fixed point in X .

The objective of this paper is to extend and generalize the result of Sarma et al. [5, Theorem 5] to two self-maps by employing a more generalized contraction, and then to unify the results of Dubey et al. [2, Theorem 3.1 and Theorem 3.2] and Aage et al. [1, Theorem 3.3].

Throughout this paper, \mathbb{Y} denotes the set of positive integers and $\mathbb{Y}_0 = \mathbb{Y} \cup \{0\}$.

II. PRELIMINARIES

We need to retrieve the following relevant definitions and results in the sequel.

Definition 2.1. ([7]). Let X be a non-empty set and let $d : X \times X \rightarrow [0, \infty)$ be a function satisfying the following conditions:

- (i) $d(x, y) = d(y, x) = 0$ implies $x = y$
- (ii) $d(x, y) \leq d(x, z) + d(z, y)$, for all $x, y, z \in X$.

Then d is called a dislocated quasi-metric (in short, dq-metric) on X , and the pair (X, d) is called a dislocated quasi-metric space (in short, dq-metric space).

In addition, if d satisfies $d(x, y) = d(y, x)$ for all $x, y \in X$, then it is called a dislocated metric.

A metric on a set is an example of dislocated metric which is also a dislocated quasi metric, but a dislocated quasi-metric is not necessarily dislocated metric and so it is not a metric.

A simple illustration of these facts is furnished in the following.

Example 2.2. Let $X = [0,1]$. Define $d : X \times X \rightarrow [0, \infty)$ by $d(x, y) = |x - y| + |x|$ for all $x, y \in X$. Then d is a dislocated quasi-metric space on X , but symmetric condition fails to hold and therefore, it is neither dislocated metric nor metric on X .

In what follows, X denotes dislocated quasi-metric space (X, d) .

Definition 2.3. ([7]). A sequence $\{x_n\}$ in dq-metric space X is called dq-convergent if for $n \in \mathbb{N}$, $\lim_{n \rightarrow \infty} d(x_n, x) = \lim_{n \rightarrow \infty} d(x, x_n) = 0$.

In this case, x is called a dislocated quasi limit (in short, dq-limit) of the sequence $\{x_n\}$.

Lemma 2.4. ([7]). dq-limits in a dq-metric space are unique.

Lemma 2.5. ([7]). Every subsequence of dq-convergent sequence to a point x_0 is dq-convergent to x_0 .

Definition 2.6. ([7]). A sequence $\{x_n\}$ in dq-metric space X is called Cauchy sequence if for each $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $d(x_m, x_n) < \varepsilon$ or $d(x_n, x_m) < \varepsilon$ for all $m, n \geq n_0$.

Definition 2.7. ([7]). A dq-metric space X is called complete if every Cauchy sequence in it is dq-convergent.

III. MAIN RESULT

Theorem 3.1. Let (X, d) be a complete dq-metric space, and let $S, T : X \rightarrow X$ be a pair of self-maps satisfying the following condition:

$$d(Sx, Ty) \leq a_1 d(x, y) + a_2 \{d(x, Sx) + d(y, Ty)\} + a_3 \{d(x, Ty) + d(y, Sx)\} \quad \dots \quad (3.1)$$

for all $x, y \in X$, where $a_i \geq 0$ with $a_1 + 2a_2 + 4a_3 < 1$.

Then S and T have a unique common fixed point in X .

Proof. Let us choose $x_0 \in X$ arbitrary. We define a sequence $\{x_n\}$ in X such that $x_{2n+1} = Sx_{2n}$ and $x_{2n+2} = Tx_{2n+1}$ for all $n \in \mathbb{N}_0$.

$$\text{We consider } d(x_{2n+1}, x_{2n+2}) = d(Sx_{2n}, Tx_{2n+1}).$$

In view of (3.1), we have

$$\begin{aligned} d(x_{2n+1}, x_{2n+2}) &\leq a_1 d(x_{2n}, x_{2n+1}) + a_2 \{d(x_{2n}, Sx_{2n}) + d(x_{2n+1}, Tx_{2n+1})\} \\ &\quad + a_3 \{d(x_{2n}, Tx_{2n+1}) + d(x_{2n+1}, Sx_{2n})\} \\ &= a_1 d(x_{2n}, x_{2n+1}) + a_2 \{d(x_{2n}, x_{2n+1}) + d(x_{2n+1}, x_{2n+2})\} \\ &\quad + a_3 \{d(x_{2n}, x_{2n+2}) + d(x_{2n+1}, x_{2n+1})\} \\ &\leq a_1 d(x_{2n}, x_{2n+1}) + a_2 \{d(x_{2n}, x_{2n+1}) + d(x_{2n+1}, x_{2n+2})\} \\ &\quad + a_3 \{d(x_{2n}, x_{2n+1}) + d(x_{2n+1}, x_{2n+2}) + d(x_{2n}, x_{2n+1}) + d(x_{2n+1}, x_{2n+2})\} \\ &= (a_1 + a_2 + 2a_3) d(x_{2n}, x_{2n+1}) + (a_2 + 2a_3) d(x_{2n+1}, x_{2n+2}) \\ \Rightarrow (1 - a_2 - 2a_3) d(x_{2n+1}, x_{2n+2}) &\leq (a_1 + a_2 + 2a_3) d(x_{2n}, x_{2n+1}) \\ \Rightarrow d(x_{2n+1}, x_{2n+2}) &\leq \left(\frac{a_1 + a_2 + 2a_3}{1 - a_2 - 2a_3} \right) d(x_{2n}, x_{2n+1}) \\ \Rightarrow d(x_{2n+1}, x_{2n+2}) &\leq \lambda d(x_{2n}, x_{2n+1}), \text{ where } \lambda = \frac{a_1 + a_2 + 2a_3}{1 - a_2 - 2a_3} < 1. \end{aligned}$$

Similarly, we have $d(x_{2n}, x_{2n+1}) \leq \lambda d(x_{2n-1}, x_{2n})$.

So, we obtain $d(x_{2n+1}, x_{2n+2}) \leq \lambda^2 d(x_{2n-1}, x_{2n})$.

Proceeding in this way, we have $d(x_{2n+1}, x_{2n+2}) \leq \lambda^{2n+1} d(x_0, x_1)$.

We claim that $\{x_n\}$ is a Cauchy sequence in X .

Now, for $n, k \in \mathbb{N}$, we see that

$$\begin{aligned} d(x_n, x_{n+k}) &\leq d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + d(x_{n+2}, x_{n+3}) + \dots + d(x_{n+k-1}, x_{n+k}) \\ &\leq (\lambda^n + \lambda^{n+1} + \lambda^{n+2} + \dots + \lambda^{n+k-1}) d(x_0, x_1) \\ &\leq (\lambda^n + \lambda^{n+1} + \lambda^{n+2} + \dots) d(x_0, x_1) \\ &= \left(\frac{\lambda^n}{1-\lambda} \right) d(x_0, x_1). \end{aligned}$$

Since $\lambda < 1$, $\lambda^n \rightarrow 0$ as $n \rightarrow \infty$ and so, $d(x_n, x_{n+k}) \rightarrow 0$. Similarly, we can show that $d(x_{n+k}, x_n) \rightarrow 0$. Thus, $\{x_n\}$ is a Cauchy sequence in X . It follows that completeness of X implies existence of $u \in X$ such that $\lim_{n \rightarrow \infty} d(x_n, u) = \lim_{n \rightarrow \infty} d(u, x_n) = 0$. Also the subsequences $\{x_{2n+1}\}$ and $\{x_{2n+2}\}$ of the sequence $\{x_n\}$ converge to u .

Now, we claim that $Su = Tu = u$.

We have $d(u, Su) \leq d(u, x_{2n}) + d(x_{2n}, Su)$

$$= d(u, x_{2n}) + d(Tx_{2n-1}, Su)$$

By using (3.1), we have

$$\begin{aligned} d(u, Su) &\leq d(u, x_{2n}) + a_1 d(x_{2n-1}, u) + a_2 \{d(x_{2n-1}, Tx_{2n-1}) + d(u, Su)\} \\ &\quad + a_3 \{d(x_{2n-1}, Su) + d(u, Tx_{2n-1})\} \\ &= d(u, x_{2n}) + a_1 d(x_{2n-1}, u) + a_2 \{d(x_{2n-1}, x_{2n}) + d(u, Su)\} \\ &\quad + a_3 \{d(x_{2n-1}, Su) + d(u, x_{2n})\} \end{aligned}$$

Taking limit $n \rightarrow \infty$, we get

$$(1 - a_2 - a_3) d(u, Su) \leq 0,$$

which is possible if $d(u, Su) = 0$, since $(1 - a_2 - a_3) \neq 0$.

Therefore, $d(u, Su) = 0$.

Also, we have $d(Su, u) \leq d(Su, x_{2n}) + d(x_{2n}, u)$

$$= d(Su, Tx_{2n-1}) + d(x_{2n}, u)$$

In view of (3.1), we have

$$\begin{aligned} d(Su, u) &\leq a_1 d(u, x_{2n-1}) + a_2 \{d(u, Su) + d(x_{2n-1}, Tx_{2n-1})\} \\ &\quad + a_3 \{d(u, Tx_{2n-1}) + d(x_{2n-1}, Su)\} + d(x_{2n}, u) \\ &= a_1 d(u, x_{2n-1}) + a_2 \{d(u, Su) + d(x_{2n-1}, x_{2n})\} \\ &\quad + a_3 \{d(u, x_{2n}) + d(x_{2n-1}, Su)\} + d(x_{2n}, u) \end{aligned}$$

Taking limit $n \rightarrow \infty$, we get

$$d(Su, u) \leq (a_2 + a_3) d(u, Su).$$

Since $d(u, Su) = 0$, $d(Su, u) \leq 0$ and so, $d(Su, u) = 0$.

Therefore, $d(u, Su) = d(Su, u) = 0$ and so, $Su = u$.

Similarly, it can be shown that $Tu = u$.

It follows that $Su = Tu = u$, and therefore, u is a common fixed point of S and T .

We claim that u is the unique common fixed point of S and T .

Since u is a common fixed point of S and T , we have

$$\begin{aligned} d(u, u) &= d(Su, Tu) \\ &\leq a_1 d(u, u) + a_2 \{d(u, Su) + d(u, Tu)\} + a_3 \{d(u, Tu) + d(u, Su)\} \\ &= (a_1 + 2a_2 + 2a_3) d(u, u) \\ \Rightarrow (1 - a_1 - 2a_2 - 2a_3) d(u, u) &\leq 0, \end{aligned}$$

which is possible if $d(u, u) = 0$, since $1 - a_1 - 2a_2 - 2a_3 \neq 0$.

Therefore, $d(u, u) = 0$.

If possible, let there be another common fixed point v of S and T .

Then $d(u, v) = d(Su, Tv)$

$$\begin{aligned} &\leq a_1 d(u, v) + a_2 \{d(u, Su) + d(v, Tv)\} + a_3 \{d(u, Tv) + d(v, Su)\} \\ &= a_1 d(u, v) + a_2 \{d(u, u) + d(v, v)\} + a_3 \{d(u, v) + d(v, u)\} \\ &= (a_1 + a_3) d(u, v) + a_3 d(v, u) \quad \dots \quad (3.2) \end{aligned}$$

Similarly, we have $d(v, u) \leq (a_1 + a_3) d(v, u) + a_3 d(u, v) \quad \dots \quad (3.3)$

From (3.2) and (3.3), we have

$$|d(u, v) - d(v, u)| \leq |a_1 + a_3 - a_3| |d(u, v) - d(v, u)|$$

which implies $d(u, v) = d(v, u)$, since $0 \leq a_1 < 1$.

From (3.2), we get

$d(u, v) \leq (a_1 + 2a_3) d(u, v)$, which gives $d(u, v) = 0$, since $a_1 + 2a_3 < 1$.

Further, we obtain $d(u, v) = d(v, u) = 0$, which implies $u = v$.

Hence, u is a unique common fixed point of S and T .

This completes the proof.

By setting $S = T$ in Theorem 3.1, we obtain the following corollary.

Corollary 3.2.

Let (X, d) be a complete dq-metric space, and let $T : X \rightarrow X$ be a self-map satisfying the following condition:

$$d(Tx, Ty) \leq a_1 d(x, y) + a_2 \{d(x, Tx) + d(y, Ty)\} + a_3 \{d(x, Ty) + d(y, Tx)\}$$

for all $x, y \in X$, where $a_i \geq 0$ with $a_1 + 2a_2 + 4a_3 < 1$.

Then T has a unique fixed point in X .

Remark 3.3. If $a_1 = a_3 = 0$ in Corollary 3.2, we obtain Theorem 1.1 (Sarma et al. [5, Theorem 5]) as a corollary of Theorem 3.1.

Taking into account that T is continuous and $S = T$ in the Theorem 3.1, we obtain the following corollary.

Corollary 3.4.

Let (X, d) be a complete dq-metric space, and let $T : X \rightarrow X$ be a continuous self-map satisfying the following condition:

$$d(Tx, Ty) \leq a_1 d(x, y) + a_2 \{d(x, Tx) + d(y, Ty)\} + a_3 \{d(x, Ty) + d(y, Tx)\}$$

for all $x, y \in X$, where $a_i \geq 0$ with $a_1 + 2a_2 + 4a_3 < 1$.

Then T has a unique fixed point in X .

Remark 3.5. Corollary 3.4 reduces to Theorem 3.1 of Dubey et al. [2] if we set $a_3 = 0$.

Remark 3.6. Corollary 3.4 reduces to Theorem 3.2 of Dubey et al. [2] if we take $a_2 = 0$.

Remark 3.7. Corollary 3.4 reduces to Theorem 3.3 of Aage et al. [1] by putting $a_1 = 0$ and $a_3 = 0$.

IV. REFERENCES

- [1] Aage C. T. and Salunke J. N., The Results on Fixed Points in Dislocated and Dislocated Quasi Metric Space, *Applied Mathematical Sciences*, Vol. 2, No. 59, 2008, pp. 2941-2948.
- [2] Dubey A. K., Shukla R. and Dubey R. P., Some Fixed Point Results in Dislocated Quasi-Metric Spaces, *Int. Journal of Math. Trends and Tech.*, Vol. 9, No. 1, May 2014, pp. 103-106.
- [3] Hitzler P., Generalized Metrics and Topology in Logic Programming Semantics, *Ph.D. Thesis, National University of Ireland (University College, Cork)*, 2001.
- [4] Hitzler P. and Seda A.K., Dislocated topologies, *J. Electr. Engin.*, 51 (12/S), 2000, pp. 3-7.
- [5] Sarma I. R., Rao J. M. and Rao S. S., Fixed Point Theorems in Dislocated Quasi-Metric Spaces, *Math. Sci. Lett.*, Vol. 3, No. 1, 2014, pp. 49-52.
- [6] Sharmeswar Singh L., A Fixed Point Theorem of a Pair of Maps in Dislocated Quasi Metric Spaces, *International Journal of Computer and Mathematical Science (IJCMS)*, Vol. 6, Issue 3, March 2017.
- [7] Zeyada F. M., Hassan G. H. and Ahmed M. A., A Generalization of a Fixed Point Theorem due to Hitzler and Seda in Dislocated Quasi-Metric Spaces, *The Arabian Journal for Science and Engineering*, Vol. 31, No. 1A, 2006, pp. 111-114.