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ABSTRACT
In this paper, a common fixed point theorem of a pair of self-maps is proved by omitting continuity requirement
in dislocated quasi metric spaces. It extends and generalizes the result of Sarma et al. [5, Theorem 5] to two self-
maps by employing a more generalized contraction. It further unifies the results of Dubey et al. [2, Theorem 3.1
and Theorem 3.2], and some well-known fixed point results in the literature.
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l. INTRODUCTION
Dislocated topologies serves as an essential tool in view of its utility in the pursuit of developing logic
programming (see [3], [4]). In 2000, Hitzler and Seda [4] proved a fixed point theorem in complete dislocated
metric spaces as a generalization of the celebrated Banach contraction principle.

In 2006, Zeyada et al. [7] initiated the notion of complete dislocated quasi-metric space as a generalization of
dislocated metric space, and generalized the result of Hitzler et al. [4] in such space. In 2008, Aage and Salunke
[1] generalized the result of Zeyada et al. [7] by proving a fixed point theorem for Kannan type of contraction in
complete dislocated quasi-metric space. Afterwards, a few papers dealt with fixed points in such space were
obtained (for instance [5], [6] etc).

In 2014, Sarma et al. [5, Theorem 5] improved the result of Aage and Salunke [1, Theorem 3.3] by omitting
continuity requirement, stated below as Theorem 1.1.
Theorem 1.1. Let (X,d) be a complete dg-metric space, and let T: X — X be a self-map satisfying the

following condition:
d (Tx,Ty) < a{d (x,Tx)+d (y,Ty)}

forall x,y e X , where 03a<%.

Then T has a unique fixed pointin X .

The objective of this paper is to extend and generalize the result of Sarma et al. [5, Theorem 5] to two self-maps
by employing a more generalized contraction, and then to unify the results of Dubey et al. [2, Theorem 3.1 and
Theorem 3.2] and Aage et al. [1, Theorem 3.3].

Throughout this paper, ¥ denotes the set of positive integersand ¥ ; =¥ U{0}.

. PRELIMINARIES
We need to retrieve the following relevant definitions and results in the sequel.

Definition 2.1. ([7]). Let X be anon-empty setand let d : X x X — [0,0) be a function satisfying the following
conditions:
@) d(x,y)=d(y,x)=0 implies x=y
(i) d(x,y) < d(x,2)+d(z,y), forall X,y,zeX..
Then d is called a dislocated quasi-metric (in short, dg-metric) on X, and the pair (X,d) is called a
dislocated quasi-metric space (in short, dg-metric space).
In addition, if d satisfies d(x,y)=d(y,x) forall x,y e X , then it is called a dislocated metric.

A metric on a set is an example of dislocated metric which is also a dislocated quasi metric, but a dislocated quasi-
metric is not necessarily dislocated metric and so it is not a metric.

A simple illustration of these facts is furnished in the following.
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Example 2.2. Let X =[0,1]. Define d : X x X — [0,0) by d(X,Y) =|X—y|+|X| forall x,ye X . Then d isa

dislocated quasi-metric space on X, but symmetric condition fails to hold and therefore, it is neither dislocated
metric nor metric on X .
In what follows, X denotes dislocated quasi-metric space (X,d).

Definition 2.3. ([7]). A sequence {X } in dg-metric space X is called dg-convergent if for ne¥,
limd(x,,x)=1limd(x,x,)=0.

n—w n—o
In this case, X is called a dislocated quasi limit (in short, dg-limit) of the sequence {X.}.

Lemma 2.4. ([7]). dg-limits in a dg-metric space are unique.
Lemma 2.5. ([7]). Every subsequence of dg-convergent sequence to a point x, is dg-convergentto x, .

Definition 2.6. ([7]). A sequence {X,} in dg-metric space X is called Cauchy sequence if for each &> 0, there
exists ny ¥ suchthat d(x,,x,) <& or d(x,,Xx,)<e forall m,n>n.

Definition 2.7. ([7]). A dg-metric space X is called complete if every Cauchy sequence in it is dg-convergent.
1. MAIN RESULT
Theorem 3.1. Let (X,d) be a complete dg-metric space, and let S, T : X — X be a pair of self-maps satisfying

the following condition:
d(Sx,Ty) <a,d(xy)+a,{d(x,Sx)+ d(y,Ty)} + a,{d (x, Ty)+ d (y,Sx)} (3.

forall x,y e X , where a; >0 with a,+ 2a, + 4a, <1.
Then S and T have a unique common fixed pointin X .
Proof. Let us choose X, € X arbitrary. We define a sequence {X.} in X such that x,,, ,=Sx,, and
Xon s 2 =1X,, ., forall ne¥ .

We consider d (X,,,,,X
In view of (3.1), we have
d (Xpn.10 Xon 4 2) < @30 (Ko, X, 1)+ @A (Xpn, S%,50) + A (Xp 4 1 TXp0 4 1)}
+ a3 {d (X5, TXpn . 1)+ d (X5, 1, SX50)}
=a,d (Xpn, Xpn , 1)+ @, {d Xy, Xp0 1)+ A (X0 4 10 X504 2)}
+a,{d (Xp0: Xon 4 2)+ A (X5 4 10 %50.1)}
< a,d (X Xon 4 1)+ 8, {d (X0, Xon 1) + 0 (X 4 10 X504 0)}
+a5{d (Xpn Xan )+ A (Xpp 4 10 X504 2) +0 (Xpp0 Xp0 1)+ (Xpn 410 X0, 2)}
= (a1+ a,+ 2613) d (XZn’XZH +1)+ (az+ 2a3) d(x2n 1 Xon 4 z)
= (1-a,-2a,) d(Xy,1,%5.2) S (@;+@,+28,) d (X, Xy, )

2) = d (SXZn ’TXZn +1) '

2n +

a,+a,+2a,

= d(X2n+l'X2n+2)S( Jd(XZn'XZnJrl)

l-a,-2a,

= d (X, 10X, 2) < Ad(X,,, X, , 1), Where Az%j;:j <1

Similarly, we have d (X, ,X,,,,) < 4.d (X, _1,X,,) -

So, we obtain d (X,, , 1, X,, , ,) < A2d (X, 1, X,,) -

Proceeding in this way, we have d (X, , 1, X5, . ) < A2 " 1d (X, X,) -
We claim that {X } is a Cauchy sequence in X .

Now, for n,k € ¥ , we see that

d(Xn’Xn-+-k)S d(xnlxn+1)+d(xn+1’xn+2)+d(xn+2'Xn+3)+ +d(Xn+k—1’Xn+k)
(A" AMTE AT L AT A (X%, %)
<A+ A" E AP L ) d (X, Xy)

A0
=[mj d(XO, Xl) .
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Since 1<1, 4">0 as n—ow and so, d(x,,x,,,)—>0. Similarly, we can show that
d(x
of ueXx such that limd(x,,u)=Ilimd(u,x,)=0. Also the subsequences {x,,,,} and {x,,,,} of the

n—ow n—ow

X,)— 0. Thus, {X,} is a Cauchy sequence in X . It follows that completeness of X implies existence

n+k?

sequence {X .} convergeto u .
Now, we claim that Su=Tu=u.
We have d (u,Su) < d (u,x,, )+ d(x,,,Su)
= d (u,X,, )+ d(Tx,,_;,Su)
By using (3.1), we have
d(u,Su) < d(u,X,,)+a,d(X,, ; u)+a,{d (X, ;. TX,, ,)+d(u,Su)}
+a,{d(x,, ;,Su)+d(u,Tx,, )}
=d (quZn)+ ald (XZn—llu)+ az{d (XZn—l’XZn)+ d (U,SU)}
+a,{d(x,, ,,Su)+d(u,x,,)}
Taking limit n — o, we get
(1-a,—a,;)d(uSu)<0,
which is possible if d(u,Su)=0,since 1-a,—-a;)#0.
Therefore, d(u,Su) =0.
Also, we have d (Su,u) < d (Su,X,,)+ d (X,,,u)
=d (Su,Tx,, )+ d(X,,,u)
In view of (3.1), we have
d(Su,u)<a, d(u,Xx,, ,)+a,{du,Su)+d (X, 1, TX, 1)}
+a,{du,Tx,, )+ d(X,,_,,Su)}+d(x,,,u)
= ald (u’XZn—1)+ az{d (u,Su)+d (XZn—l’XZn )}
+a,{d (U, Xx,, )+ d(X,, ;. Su)}+d (X, u)
Taking limit n — o, we get
d(Su,u) < (a,+a,)d(u,Su).
Since d(u,Su)=0, d(Su,u) <0 andso, d(Su,u)=0.
Therefore, d (u, Su) =d (Su,u) =0 andso, Su=u.

Similarly, it can be shown that Tu=u.
It follows that Su=Tu =u, and therefore, u isacommon fixed pointof S and T .

We claim that u is the unique common fixed pointof S and T .
Since u is a common fixed pointof S and T , we have
d(u, u) =d(Su, Tu)
<a,d(u,u)+a,{du,Su)+du,Tu)}+a,{d (u,Tu)+ d (u,Su)}
=(a,+2a,+2a,) d(u,u)
= (1-a,-2a,—2a,)d(u,u)<0,
which is possible if d(u,u)=0, since 1-a,-2a,-2a,#0.
Therefore, d (u,u) =0.

If possible, let there be another common fixed point v of S and T .
Then d (u, v) =d (Su, Tv)

<a,d(uv)+a,{d(u,Su)+d(v,Tv)}+a,{d (u,Tv)+ d (v,Su)}
=a,d(uv)+a,{duu)+d,v)}+a,{duv)+d(v,u)}
=(a,+a;)d(u,v)+a,d(v,u) (3.2
Similarly, we have d (v, u) < (a,+a;)d(v,u)+a,d(u,v) .. (3.3
From (3.2) and (3.3), we have
[duv)-d(v,u)|<|a,+a,—a,|[d(uv)-dWvu)l
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which implies d (u, v) =d (v, u), since 0<a, <1.

From (3.2), we get

d(u,v) < (a,+2a,)d(u,v), which gives d(u,v) =0, since a,+ 2a,<1.
Further, we obtain d (u, v) =d (v, u) = 0, which implies u=v .

Hence, U is a unique common fixed pointof S and T .
This completes the proof.

By setting S =T in Theorem 3.1, we obtain the following corollary.

Corollary 3.2.

Let (X,d) be a complete dg-metric space, and let T: X — X be a self-map satisfying the following

condition:

d(Tx, Ty) <a,d(x,y) +a,{d(x, Tx)+d(y, Ty)}+a,{d(x,Ty) +d (y, Tx)}

forall x,y e X , where a,>0 with a,+ 2a,+4a, <1.

Then T has a unique fixed pointin X .
Remark 3.3.If a, =a, =0 in Corollary 3.2, we obtain Theorem 1.1 (Sarma et al. [5, Theorem 5]) as a corollary

of Theorem 3.1.

Taking into account that T is continuous and S =T in the Theorem 3.1, we obtain the following

corollary.
Corollary 3.4.

Let (X,d) be a complete dg-metric space, and let T : X — X be a continuous self-map satisfying the

following condition:

d(Tx, Ty)< a,d(x,y)+a,{d(x,Tx) +d(y.Ty)}+a,{d(x, Ty) +d(y, Tx) }

forall x,y e X ,where a, 20 with a,+2a,+4a,<1.

Then T

has a unique fixed point in X .

Remark 3.5. Corollary 3.4 reduces to Theorem 3.1 of Dubey et al. [2] if we set a,=0.

Remark 3.6. Corollary 3.4 reduces to Theorem 3.2 of Dubey et al. [2] if we take a,=0.

Remark 3.7. Corollary 3.4 reduces to Theorem 3.3 of Aage et al. [1] by putting a, =0 and a , =0.
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