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ABSTRACT 
The flow of peristaltic hyperbolic tangential fluid past porous walls with suction/injection is investigated. The 

regular perturbation method has been implemented to establish the appropriate expressions for velocity and pressure 

rise per wavelength by means of the assumptions of long wavelength and low valued Renolds number. The impact 

of numerous parameters on the pumping physical characteristics per wavelength is discussed graphically. It is 

recognized that the rising of the power law index of hyperbolic tangent fluid, rises the pressure in pumping region.  
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I. INTRODUCTION 
 

Peristalsis occurs as in terms of progressive wave in which area contraction or expansion propagates along the tube. 

The natural property occurs in oesophagus, gastrointestinal tract, ductefferentus of the male reproductive tract, the 

bile duct, the fallopian tube, and the ureter.  A few research works concerned with the peristaltic pumping can be 

seen in [1-7].  

 

Among the non-Newtonian fluid models, the hyperbolic tangent fluid model [8] has the rheological behaviour of 

shear thinning. Nadeem and Akram [9] studied the peristaltic flow of such fluid through an asymmetric channel. 

Nadeem and Maraj [10] investigated the peristaltic pumping of a non-Newtonian hyperbolic tangent fluid in a 

curved channel with the application of Homotopy perturbation method. Saravana et al. [11] addressed the effects of 

peristalsis and elastic nature wall properties on the flow of conducting non-Newtonian hyperbolic tangent fluid with 

tapered channel with a standardized perturbation technique. 

 

Motivated by the studies, the peristaltic transmission of a hyperbolic non-Newtonian tangent fluid with permeable 

wall is studied under long wavelength and small Reynolds number assumptions. The pressure rise/drop over one 

cycle of wave length are attained and the results are depicted graphically. 

 

II. MATHEMATICAL MODEL 
 

We consider the peristaltic wave propagation of a hyperbolic tangent fluid in a 2-dimensional symmetric uniform 

channel between two porous walls of constant speed ‘ c ’. The fluid is blowing perpendicularly into the channel at 

the lower porous wall with fixed velocity 
0V  and is sucked out at the upper porous wall with same 

0V  as revealed in 

Fig.1 with the effect and impact of symmetric waves, it is adequate to study for mean width of the channel a .  

2
( , ) sin ( )H X t a b X ct




= + −                      ………………………….(1) 

where b  and  denotes the amplitude and wave length  respectively.  
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Fig. 1.  Physical model 

 

The respective conversion from the laboratory frame of reference (𝑋, 𝑌) to the wave frame of reference (𝑥, 𝑦) is 

given by 

( ) ( ), , , , ,x X ct y Y u U c v V p x P X t= − = = − = =
-----------------------(2) 

where(𝑢, 𝑣) and (𝑈, 𝑉 ) are the velocity components, 𝑝andPare the corresponding  pressures in the wave and  fixed 

frames of reference respectively. 

 

The non-dimensional quantities as given below: 
2

0

0

0

0 0

0 0

2
, , , , , , ,

, , , , ,

, Re , , ,

xx xx xy xy

yy yy

vx y u b a pa
x y u v p

a c c a c

H ct a a a
h t

a c c c

a ac q c
q We

c a ac a


 

   


    

  

 
  

 

= = = = = = =

= = = = =


= = = = =

  

 

The governing equations of flow field in wave frame analysis and with the assumptions of long wavelength and 

small Reynolds number is as follows 

xyp u
k

x y y

 
= −

  
  ----------------------(3) 

where ( )
2

1xy

u u
n nWe

y y


  
= − +  

  
; 0Re.k v= in which 0v  is suction/ injection velocity  

The volume flow rate 𝑞in an existing wave frame as in case of reference is given by 

=

)(

0

.

xh

dyuq    --------------------------(4) 

The instantaneous flux 𝑄(𝑋, 𝑡) is 

  +=+==

h h

hqdyudYUtXQ
0 0

.)1(),(  

The actual time average flux Q over a period ( )T
c

= of the peristaltic wave is 

1

0 0

1
( ) 1.

T

Q Q dt q h dx q
T

= = + = +   -------------------------(5) 

 

 

 

 

III. PERTURBATION SOLUTION 
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The equation (2) is not a linear and the closed form solution may not be possible. Hence we apply the perturbation 

technique in terms of a small Weissenberg number. We expand u, p and q in terms ofWe as 

( )2

0 1u u Weu O We= + +
,              

( )20 1
p pp

We O We
x x x

 
= + +

  
         ---------------------(6) 

( )2

0 1q q Weq O We= + +  

The Zeroth and First order equations are 

Equation of order 
0We  

( )
2

0 0 0

2
1

dp u u
n k

dx yy

 
= − −


 ----------------------------(7)

 

and the boundary conditions are 

0 0
u

y


=


at 0y =   ---------------------------(8) 

( ) 0

0 1 1
u

u n
y




= − − −


at y h=  --------------------------(9)  

Equation of order We  

( )
22

01 1 1

2
1

udp u u
n n k

dx y y y y

   
= − − −  

       ----------------------------(10)

 

and the boundary conditions are  

1 0
u

y


=


at 0y =

 -----------------------------
(11)  

( ) 1

1 1
u

u n
y




= − −


at y h=
-----------------------------(12)

 

The Zeroth and First order Solutions are obtained by solving the resulting systems (7) and (10) with appropriate 

conditions (8-9) and (11-12) 

( ) ( ) ( )( )
( ) ( )1 100 0
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   

    
+ − −  − 

− 
+ − − + + 
  ( )

( )
2

10

2

2

1

ky

nnp y
e

k n

−
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 -------(14) 

  

0 0

1

p q h

x c

 +
=


  --------------------------(15) 

2

01 1 2

1 1

pp q c

x c x c

  
= − 

  
----------------- (16), 0 0

0

h

q u dy=  -------------------------(17)  
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1 1

0

h

q u dy=   ----------------------(18) 

Where
( ) ( ) ( ) ( ) ( ) ( ) ( )
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Substituting (15) and (16) into the equation (6), using 0 1
p pp

We
x x x

 
= −

  
 and neglecting ( )2O We , we get 

( )
2 2

3

1 1

cdp q h
We q h

dx c c

+
= − +  ----------------------    (19)     

 The dimensionless pressure rise per wavelength in the wave frame of reference is defined as 
1

0

dp
p dx

dx
 =    ------------------------(20)  

 

IV. RESULTS AND DISCUSSION: 
 

The variation of pressure rise with Q  for distinct values of Weissenberg numberWe  is depicted in Fig. 2. From the 

figure, we noticed that the larger theWe , the greater the pressure growth in the pumping region and in the co-

pumping region. The difference of  p  with Q for power-law index number is depicted in Fig.3.  In the figure, we 

observe that larger the power-law index number n the greater the pressure rise for the pumping region and opposite 

trend is found in the co-pumping region.  

 

From Fig. 4, we find that the rising of the velocity slip parameter   , dropping the pressure growth against which 

the pump works when 0.5Q   and the reverse trend is observed from that point 0.5Q = onwards. In Fig.5, we 

notice that the pumping curves intersects at 0.45Q = . For 0.45Q  , the greater the suction/ injection parameter k , 

pressure rise decreases against which the pump works but the trend is reversed for 0.45Q  . 

 

Fig. 2. P vsQ  for We with 0.6 = , 0.06n = , 0.01 =  and 1k =  
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Fig. 3. P vsQ  for n with 0.6 = , 0.001We = , 0.01 =  and 1k =  

 

Fig. 4. P vsQ  for  with 0.6 = , 0.001We = , 0.02n =  and 1k =  

 

Fig. 5. P vsQ  for k with 0.6 = , 0.001We = , 0.02n =  and 0.01 =  
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