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ABSTRACT
The flow of peristaltic hyperbolic tangential fluid past porous walls with suction/injection is investigated. The
regular perturbation method has been implemented to establish the appropriate expressions for velocity and pressure
rise per wavelength by means of the assumptions of long wavelength and low valued Renolds number. The impact
of numerous parameters on the pumping physical characteristics per wavelength is discussed graphically. It is
recognized that the rising of the power law index of hyperbolic tangent fluid, rises the pressure in pumping region.
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I. INTRODUCTION

Peristalsis occurs as in terms of progressive wave in which area contraction or expansion propagates along the tube.
The natural property occurs in oesophagus, gastrointestinal tract, ductefferentus of the male reproductive tract, the
bile duct, the fallopian tube, and the ureter. A few research works concerned with the peristaltic pumping can be
seen in [1-7].

Among the non-Newtonian fluid models, the hyperbolic tangent fluid model [8] has the rheological behaviour of
shear thinning. Nadeem and Akram [9] studied the peristaltic flow of such fluid through an asymmetric channel.
Nadeem and Maraj [10] investigated the peristaltic pumping of a non-Newtonian hyperbolic tangent fluid in a
curved channel with the application of Homotopy perturbation method. Saravana et al. [11] addressed the effects of
peristalsis and elastic nature wall properties on the flow of conducting non-Newtonian hyperbolic tangent fluid with
tapered channel with a standardized perturbation technique.

Motivated by the studies, the peristaltic transmission of a hyperbolic non-Newtonian tangent fluid with permeable

wall is studied under long wavelength and small Reynolds number assumptions. The pressure rise/drop over one
cycle of wave length are attained and the results are depicted graphically.

II. MATHEMATICAL MODEL

We consider the peristaltic wave propagation of a hyperbolic tangent fluid in a 2-dimensional symmetric uniform
channel between two porous walls of constant speed ‘¢ ’. The fluid is blowing perpendicularly into the channel at

the lower porous wall with fixed velocity ¥, and is sucked out at the upper porous wall with same ¥, as revealed in

Fig.1 with the effect and impact of symmetric waves, it is adequate to study for mean width of the channel & .
. 2
H(X,t)za-f—bSll’lT(X—Ct) ............................... (N

where b and A denotes the amplitude and wave length respectively.
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Fig. 1. Physical model

The respective conversion from the laboratory frame of reference (X,Y) to the wave frame of reference (x,y) is
given by

x=X-ct, y=Y, u=U-c, v=V, p(x):P(X,t)

2
where(u, v) and (U,V ) are the velocity components, pandPare the corresponding pressures in the wave and fixed
frames of reference respectively.

The non-dimensional quantities as given below:

)?:i,y:z’ﬁ:z’_ozv_o’ :2, 5:2ﬂaﬁ:pa2
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The governing equations of flow field in wave frame analysis and with the assumptions of long wavelength and
small Reynolds number is as follows

_tn o
ox Oy oy

3

2
ou ou
where 7,, = (1 - n)— +n We[—] ; k =Re.v, in which v, is suction/ injection velocity
oy oy

The volume flow rate gin an existing wave frame as in case of reference is given by
h(x)

q= [udy. )
0
The instantaneous flux Q (X, t) is

O(X, )= [UdY =[(@+1)dy=q+h

The actual time average flux O over a period 7'(= % ) of the peristaltic wave is

0= ]‘th:j‘(q+h)dx:q+l. (5)

III. PERTURBATION SOLUTION
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The equation (2) is not a linear and the closed form solution may not be possible. Hence we apply the perturbation
technique in terms of a small Weissenberg number. We expand u, p and g in terms of We as

a—p:%+We%+O(We2) ..................... (6)
ox Ox ox

u=u,+Weu, + O(We2)
q=q,+Weq, + O(We2)

The Zeroth and First order equations are
Equation of order We°

%:(1_,1)62”0 _ ;%
dx oy’ oy ™
and the boundary conditions are
ou,
o =04 y=0 (8)

ou,
uoz—l—ﬂ(l—n)a—yoatyzh )
Equation of order We

2
/B i S | G T
dx » o) | w0
\
and the boundary conditions are
16}
. 0 at y=0 (11)
ou

u1=—ﬂ(1—n)alat y=h (12)

The Zeroth and First order Solutions are obtained by solving the resulting systems (7) and (10) with appropriate
conditions (8-9) and (11-12)

kh

u, =—1—(1—n)poe(17") (ﬂ+%j+%(ﬂ(l—n)+h)+(l_n)PO e —&y ————————————————————— (13)
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h
q, = juldy (18)
0
h(1-n) oo ph(1-n) (1- 1-n)" oo (1=n)
Wherecl :_Ln)e(l—n) +’B ( n)_( zn)ek/’l +( :l) e(l—n) _%_’_h_
k k k k k 2k
kh 2kh kh kh 2kh kh
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kh 2kh kh
6n(1- 1- 11n(1-
_on( : n)e(l,n) +n( 4n) S +2h:z S n(4 n)
k 2k k k
Substituting (15) and (16) into the equation (6), using Py = P_ We% and neglecting O(Wez) , we get
Ox Ox Ox
d_p _q+ h 26 19
- Cl We(q+h) 13 (19)
The dimensionless pressure rise per wavelength in the wave frame of reference is defined as
1
_[%
Ap = '([ L ds (20)

IV.  RESULTS AND DISCUSSION:

The variation of pressure rise with O for distinct values of Weissenberg number We is depicted in Fig. 2. From the
figure, we noticed that the larger the We , the greater the pressure growth in the pumping region and in the co-
pumping region. The difference of Ap with Q for power-law index number is depicted in Fig.3. In the figure, we

observe that larger the power-law index number 71 the greater the pressure rise for the pumping region and opposite
trend is found in the co-pumping region.

From Fig. 4, we find that the rising of the velocity slip parameter 5 , dropping the pressure growth against which
the pump works whenQ < 0.5 and the reverse trend is observed from that point Q = 0.5 onwards. In Fig.5, we
notice that the pumping curves intersects at O = 0.45 . For O < 0.45 , the greater the suction/ injection parameter k ,

pressure rise decreases against which the pump works but the trend is reversed for Q > 0.45 .

We = 0.00, 0.001, 0.002

AP

0.0 0.2 04 0.6 0.8 L0

Fig. 2. APvsQ for We with $=0.6,n=0.06, £=0.01 and k=1
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Fig. 5. APvsQ for k with ¢ =0.6, We=0.001, n=0.02 and 8 =0.01
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