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ABSTRACT 
In this paper, the author presented certain integrals involving product of the multivariable H-function with 

exponential function, Gauss’s hypergeometric function and Fox’s function. The results derived here and basic in 

natural and many include a number of known and new results as particular cases. 
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I. INTRODUCTION 

 
The Gaussian hypergeometric function is of fundamental important in the theory of special functional. The 

important of this function lies in the first that most all of the commonly used function of applicable mathematics, 

mathematical physics, engineering and mathematical biology are expressible as its special cases.  

The series 
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Where (𝒂)𝒏 is the pochhammer symbol defined by 
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is called the Gauss’s hypergeometric series of the famous German mathematician Carl Friedrich Gauss (1777-1855) 

who is the year 1812 introduced the series. It is represented by the symbol ):;,(12 zcbaF and is called the Gauss’s 

hypergeometric functional so. 

 

In 1961 Charles Fox [2] introduced a function which is more general then the Meijer’s G-function and this function 

is well known in the literature of special function as Fox’s H-function or simply the H-function. This function is 

defined and represented by means of the following Mellin-Barnes type contour integral 
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and z is a suitable contour of the Mellin-Barnes type which runs from +− itoi , separating the  poles  of 

)( sb jj − , (j =1,… …,m) from those of )1( sa jj +− ,( j =1,…  …,n). An  empty product is  interpreted  

asunity the integers m,n,p,q  satisfy the inequalities  0 ;0, qmpn   the coefficients 

)q,…  … 1,(),p,…  … 1,( ==== jj jj  are positive real numbers, and the complex parameter 

)q,…  … 1,(),p,…  … 1,( ==== jbja jj are so constrained that no poles of the integrand coincide. Owing to 
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the popularity of the special functions, those are defined in (1) and (3) (c.f [4],[3] and [5]), details regarding these 

are avoided. 

 

The multivariable H-function which was introduced and investigated by Srivastava& Panda [5] in term of a multiple 

Mellin-Bernes type contour integral as 
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And =
j

LL j  represents the contours which start at the point − j and terminate at the points + j
with 

( )( )....,,1, rjj =−=  

 In case r = 2, (5) reduce to the H-function of two variables. 

In case r = 1, (5) reduce to the H-function of one variables. 

 

II. RESULT REQUIRED IN THE SEQUEL  

 
We shall require the following results in the sequel : 
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From Rainville{1}:  
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III. MAINRESULTS 
 

In this section we have evaluated certain integrals involving product of the Multivariable H-function with 

exponential function, Gauss’s hypergeometric function and Fox’s H-function. 
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IV. PARTICULAR CASE: 
 

 (a) Putting r=2, t=1 in theorem (5) the new results may be realized to the H-function of two variables: 

 

∫ 𝑥𝜌−1(1 − 𝑥)𝜎−1𝑒−𝑧𝑥
12 F (𝑎, 𝑏, 𝑐 + 1

2
 ; 𝑥𝜁(1 − 𝑥)𝜂)

12 F (𝑐 − 𝑎, 𝑐 − 𝑏, 𝑐 + 1

2
 ; 𝑥𝜁(1 − 𝑥)𝜂)

1

0

dxH
pjjpjjpjjj

qjjqjjqjjj

cca

ddb

xxy

xxy

nmnmn

qpqpqp
















−

−

2
,1

22

1
,1

11

,1

21

2
,1

22

1
,1

11
,1

21

11
1

22
2

2211

2211

),(;),(:),,(

),(;),(:),,(

)1(

)1(

,;,;,0

,;,;,








 

= 𝑒−𝑧 ∑

∞

𝑢=0

∑ 𝑓(𝑘)

𝑢

𝑘=0

𝑧𝑢−𝑘

(𝑢 − 𝑘)!
 

( )
)13(H 2

,1
22

1
,1

11
,1

21
2121

2
,1

22

1
,1

11
2211,1

21

1

2

2211

2211

),(;),(:),,)(,;)1(1(,),;1(

),(;),(:,;)1(1,),;(

n,m;n,m:2n,0

q,p;q,p:1q,2p 









−−−−−−

++−−+−−−

+

++

pjjpjjpjjj

qjjqjjqjjj

ccaukk

ddukb

y

y



  

(b) Putting n=p=q=0,r=1 and t=1 in theorem (5) the new results may be realized to the H-function of one variables: 
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V. CONCLUSION 

 
The Multivariable H-function, Presented in this paper, is quite basic in nature. Therefore, on specializing the 

parameters of this function, we may obtain various other special functions such as Fox’s H-function, Meijer’s G-

function, Wright’s generalized Bessel function, Wright’s generalized hypergeometric function, Mac-Robert’s E-

function, generalized hypergeometric function, Bessel function of first kind, modified Bessel function, Whittaker 

function, exponential function, binomial function etc. as its special cases, and therefore, various unified integral 

presentations can be obtained as special cases of our results. 
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