

An Analytical Approach to Data Processing in Hive Using User Defined Functions and

HQL

Elena Petrova¹, Lukas Schmidt², Anna Kowalska³*

¹Department of Materials Science, Lomonosov Moscow State University, Moscow, Russia

²Institute of Theoretical Physics, University of Heidelberg, Heidelberg, Germany

³Department of Applied Mathematics, University of Warsaw, Warsaw, Poland

ABSTRACT
Apache Hadoop is an open source framework that deals with the distributed computing of large datasets across a

clustered of computers using low-cost hardware and simple programming models. Hadoop uses HDFS (Hybrid

Distributed File System) for data storage. This allows for distributed processing of large sets across clustered of

computers using simple programming languages. Hive is a famous data warehouse package built on top of Hadoop.

It provides an SQL tongue called Hive Query Language (HQL) for querying and processing of large sets of data.

But the problem with HQL is that it takes more time when queries are applied to convert data in rows to columns i.e

horizontal to vertical. This limitation of HQL is improved by using the User Defined Functions (UDF) in Hive. With

the help of UDF, many calculations that are outside the scope of built-in HQL operations and functions in Hive like

query many columns, combine several column values into one and transformations that are taking more time in

HQL, can be solved easily. In the proposed research work five different data sets are taken from web for

experimental results. Simple queries using UDF and HQL are applied on these data sets. The results obtained on

these data sets show that UDF is better than HQL.

Keywords: Hadoop, Hive, UDF, HQL, Big data, Data Warehousing.

I. INTRODUCTION

Hadoop is used for processing data mining, data analytics, decision making and in many research organizations. A

framework Map Reduce is used in Hadoop for job scheduling and clustered resource management [4]. This

framework is used to process vast amount of data in a distributed and parallel environment on a clustered of

commodity hardware. Hive is a relational data warehouse solution for storing and processing large sets of data

residing in a distributed storage system Hadoop [5]. Hive uses SQL like language called Hive Query Language

(HQL). Hive supports many formats like Text, ORC, RC and Sequence [9]. Hive store metadata in RDBMS which

reduces the time to perform semantic checks during query execution. Hive run both high performance native code

written in C++ and Java based Hive UDF that might already have written [6]. The code either a scalar function for

producing results one row at a time or more complex aggregated functions for doing analysis that used in this paper.

HiveServer2 is improved version of HiveServer that support a new thrift API tailored for JDBC and ODBC clients

[8]. It is a server interface that enables remote clients to execute queries against Hive and retrieve the result.

HiveServer2 supports multi client concurrency and authentication [11]. This is designed to provide better support for

open API clients like JDBC and ODBC [7]. New CLI in HiveServer2 named Beeline. This paper presents the

processing time of UDF and HQL in Hive by using five data sets and by firing same queries on both.

II. BACKGROUND STUDY

Phaneendra S. V. et al., [1] illustrated that in past days the data was not generating at a fast pace and this type of data

is easily handled by RDBMS. But the data generated in current scenario are not handled by RDBMS that is called

Big Data. They distinguish big data from other data by five dimensions volume, velocity, variety, value, complexity.

To handle with the problem of big data they illustrated the concept of Hadoop.

Bifet A. [2] suggested that streaming data analysis is the most appropriate and fastest way to improve performance.

Huge amount of data is created at a very pace that is called big data. There are many tools used for mining Big data

are apache hadoop, apache big, apache Hive, cascading, scribe, storm, apache hbase, apache mahout, etc. Thus, they

instructed that the ability to handle many exabytes of data mainly dependent on existence of rich variety dataset,

technique, software framework.

Sagiroglu S. et al., [3] explained the advntages, disadvantages, scope, and characteristics of big data. From this

paper it can be concluded that each and every organization can easily handle Big Data if they carefully analyze the

Acervo||ISSN: 2237 - 8723 Vol 06, Issue 08||2024

https://acervojournal.org/||Page No: 37

data. Because the data is growing at a very fast pace, so the challenge is to extract a useful information from this

data. It can only be possible by carefully analyze the data and by using an appropriate and optimized technique.

III. PROPOSED METHODOLOGY

There are three aspects that will determine the result: 1) Data set 2) Average query time 3) Query Type used in HQL

and UDF.

A). Case Environment

The environment provides the details view of platform used in this research. The installation of Hadoop is done for a

single node. So, there is Hadoop master and after that installation of Hive is done on Hadoop [10]. Hive and

HiveServer2 runs on the top of Hadoop shown in the following figure. The data resides on HDFS in Hadoop. The

replication factor set to 3 and block size defined 64 Megabytes.

Figure 1.1 Environment used in experimental research

There are some detailed steps that are performed when the processing on data is done.

a) Starting the services of Hadoop and Hive

b) The creation of table is done in Hive which contains 24 columns.

c) The data is load into the table and load this table in the warehouse folder of Hive.

d) UDF is created here and fix the evaluate function by passing as a single argument.

e) Created UDF compiled and make jar file of UDF and upload on the Hive warehouse folder.

f) A new permanent function (grt) is created that linked with UDF by using the properties of Hive.

Selectplayerid,yearid,grt(concat(nvl(ing1,0),':',nvl(ing2,0),':',nvl(ing3,0),':',nvl(ing4,0),':',nvl(ing5,0),':',nvl(ing6,0), ':',

nvl(ing7,0),':',nvl(ing8,0),':',nvl(ing9,0),':',nvl(ing10,0),':',nvl(ing11,0),':',nvl(ing12,0),':',nvl(ing13,0),':',nvl(ing14,0),'

:',nvl(ing15,0),':',nvl(ing16,0),':',nvl(ing17,0),':',nvl(ing18,0),':',nvl(ing19,0))) from tb_cricket;

After this, UDF is called by newly created function and a new table is created which contain 3 columns to store the

result of this UDF. Here the outer queries are performed. The Map reduce does not run when the process is executed

by UDF. But when same process is executes using HQL the Map Reduce process running. Here the queries are fired

on HiveServer2. The queries are:

Stringsql1="select playerid,

sum(centcnt) cent,

max(cast(maxrun as BIGINT))maxrun,

min(cast(minrun as BIGINT)) minrun,";

sql1 += " sum(cast(totalrun as BIGINT)) totrun,";

sql1 += " sum(cast(fiftcnt as BIGINT)) totfifties,";

sql1 += " sum(cast(duccnt as BIGINT)) totducs,";

sql1 += " sum(cast(ingplayed as BIGINT)) totings,";

sql1 += " sum(cast(dnpcnt as BIGINT)) totdnp, ";

sql1 +="sum(cast(totalrun as BIGINT))/sum

(cast(ingplayed as BIGINT)) totavg ";

sql1 += " from (select playerid,ret[0] maxrun,ret[1] centcnt,

Acervo||ISSN: 2237 - 8723 Vol 06, Issue 08||2024

https://acervojournal.org/||Page No: 38

ret[2] minrun, ret[3] totalrun, ret[4] fiftcnt, ret[5] duccnt,

ret[6] ingplayed, ret[7] dnpcnt from (select playerid,

split(runs,':') ret from tb_data1) bar) bar1 group by

playerid";

System.out.println("Running: " + sql1);

ResultSet res = stmt.executeQuery(sql1);F

B). Data sets and file size

The dummy cricket data taken from web and the original data sets can be reconstructed to make it easier to analyze.

The five data set called F1 contain a total of 50,000 rows and 24 columns. The second data set called F2 contain

10,48,576 rows and 24 columns. The third data set called F3 contain 31,45,728 Rows and 24 columns. The fourth

data set called F4 contain 62,91,456 rows and columns. The last and fifth data set called F5 contain 1,14,06,966

crore rows and 24 columns .

C). Average query time

On Each data set the 9 different queries are executed 5 times and an average time can be calculated in both UDF and

HQL. The time takes in seconds.

D). Query Type used in UDF and HQL

The query fired in UDF are written in Java and another query fired in HQL but both are calculating the same results

and 9 different fields are calculated of individual player which are sorted by player wise are: Total runs, Maximum

runs, Minimum runs, Fifties count, Centuries count, Average, Ducks count, Total innings played, Total innings not

played.

IV. RESULTS AND DISCUSSIONS

All experiments are performed using virtual machine. System runs on linux with 4GB Ram and i3 processor. The

query fired using UDF and HQL on five different data sets are give following results shown in Table 1-5.

Table 1. Result for data set F1

Attempts UDF Time HQL Time

1 2.124 sec 5.670 sec

2 2.179 sec 4.690 sec

3 2.131 sec 4.460 sec

4 2.512 sec 4.355 sec

5 2.676 sec 4.900 sec

Average 2.324 sec 4.815 sec

Table 2. Result for data set F2

Attempts UDF Time HQL Time

1 9.013 sec 16.970 sec

2 10.171 sec 16.740 sec

3 10.208 sec 16.540 sec

4 10.163 sec 16.750 sec

5 10.105 sec 16.850 sec

Average 9.932 sec 16.77 sec
Table 3. Result for data set F3

Attempts UDF Time HQL Time

1 31.093 sec 42.770 sec

2 31.104 sec 42.230 sec

3 31.144 sec 42.510 sec

4 31.992 sec 42.330 sec

5 32.011 sec 42.600 sec

Average 31.468 sec 42.488 sec

Acervo||ISSN: 2237 - 8723 Vol 06, Issue 08||2024

https://acervojournal.org/||Page No: 39

Table 4. Result for data set F4

Attempts UDF Time HQL Time

1 67.119 sec 81.360 sec

2 62.590 sec 81.240 sec

3 61.013 sec 83.690 sec

4 69.972 sec 98.960 sec

5 69.012 sec 78.890 sec

Average 65.941 sec 84.828 sec

Table 5. Result for data set F5

Attempts UDF Time HQL Time

1 114.973 sec 149.150 sec

2 109.367 sec 169.30 sec

3 117.071 sec 122.260 sec

4 114.775 sec 125.410 sec

5 113.784 sec 132.710 sec

Average 113.994 sec 139.766 sec

The table’s 1-5 shows the results obtained from five different data sets i.e F1, F2, F3, F4, F5. Five attempts are

applied on these five data sets. The same query is fired o the same data sets. UDF & HQL is used to run the query.

The average time can be calculated among five attempts to take the appropriate results. The average time calculated

in all tables showing the resultant performance of UDF and HQL on five different data sets. So, in each data set the

result of UDF is better than HQL as UDF takes less time to executing the query in each case.

V. CONCLUSION

The advantage offering Hadoop is scaling up from single server to thousands of machines with local storage and

using inexpensive hardware. From the experimental results it is concluded that in Hive, UDF can overcome HQL on

low-cost hardware with basic query. However, this is tested on a low-cost hardware. Performance may change when

better hardware is used for certain software.

REFERENCE

1. Phaneendra S. V. and Reddy E. M., “Big Data- Solutions For RDBMS Problems-A Survey,” In

International Journal of Advanced Research in Computer and Communication Engineering, 2013, pp.

3686-3691.

2. Bifet A., “Mining Big Data In Real Time,” Informatica 37, 2012, pp. 15–20.

3. Sagiroglu S. and Sinanc D., “Big Data:A Review,” In International Conference on Collaboration

Technologies and System, 2013, pp. 42-47.

4. Kala K. A. and Chitharanjan K., “A Review on Hadoop-HDFS Infrastructure Extensions,” In IEEE

Information & Communication Technologies (ICT), 2013, pp. 132-137.

5. Bakshi K., “Considerations for Big Data: Architecture and Approach,” In IEEE Aerospace Conference,

2012, pp. 1-7.

6. Bhosale H. S. and Gadekar D. P. , “A Review Paper On Big Data & Hadoop,” In International Journal of

Scientific and Research Publications, 2013, pp. 1-7.

7. Khajuria A. et al.; “Analysis of Bidgata using Apache Hadoop and Map Reduce,” In International Journal

of Advanced Research in Computer Science and Software Engineering, 2014, pp. 555-560.

8. IBM Software Information Management, “Hadoop Core-HDFS, MapReduce, Pig, Hive, and Jaql,” 2012,

Ch.1-4, pp. 3-20.

9. Srakar D., “Microsoft SQL Server 2012 with Hadoop,” 2013, Ch.1-4, pp. 3-73.

10. P.Subhasri, “Cloud Computing: Security Challenges & Encryption Practices”, International Journal of

Advanced Research in Computer Science and Software Engineering, Volume 3, Issue 3, March 2013 ISSN:

2277 128X, pp. 255-259.

11. Bamford J. (2012). [Online]. http://www.wired.com/2012/03/ff nsadatacenter/.

Acervo||ISSN: 2237 - 8723 Vol 06, Issue 08||2024

https://acervojournal.org/||Page No: 40

http://www.wired.com/2012/03/ff

