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ABSTRACT

This study investigates the applicability of adaptive neuro-fuzzy inference system (ANFIS) and artificial neural
network (ANN) approaches for modeling the fatty acid methyl esters (FAMESs) property including kinematic
viscosity at various temperatures and the volume fractions of biodiesel. An experimental database of kinematic
viscosity of pure biodiesel was used for developing of models, where the input variables in the network were the
temperature, the number of carbon atoms (NC) and the number of hydrogen atoms (NH) of the composition of
methyl esters (C8:0, C10:0, C12:0, C14:0, C16:0, C16:1, C18:0, C18:1, C18:2, C18:3, C20:0, C20:1, C22:0,
C22:1, C24:0 were considered as input variables on the ANFIS and ANN. Moreover, the models are divided
into saturated species from C8:0 to C24:0 and unsaturated species, from C16:1 to C22:1. The model results were
compared with experimental ones for determining the accuracy of the ANFIS and ANN predictions. The
developed model produced idealized results and was found to be useful for predicting the kinematic viscosity of
biodiesel blends with a limited number of available data. Moreover, the results suggest that the ANFIS approach
can be used successfully for predicting the kinematic viscosity of biodiesel blends at various volume fractions
and temperature compared to ANN approach.

KEYWORDS: Biodiesel blends; composition of methyl esters; kinematic viscosity; number of carbon atoms;
number of hydrogen atoms

l. INTRODUCTION
Reducing sources of fossil fuels and their pollution has been the aim of extensive research performed on
alternative energy sources, particularly renewable fuels. Biodiesel is an alternative renewable fuel for diesel
fuel, which includes alkyl esters of fatty acids obtained from vegetable oils or animal fats by transesterification
reaction. [1-3]
Biodiesel has many advantages, which have caused the consideration of this fuel in recent years. It is
biodegradable, nontoxic, and renewable. In addition, biodiesel has a higher cetane number and a flash point than
diesel oil and effectively reduces the release of hydrocarbons and carbon monoxide and suspends particles from
combustion. Biodiesel dissolves in diesel oil completely so it can be combined in any percent. Differences
between biodiesel and diesel fuels exist (higher density and viscosity, higher cloud point and pour point (in
some cases), and lower heat of combustion), but biodiesel can be used pure or mixed with diesel, without
modification in diesel equipment directly. [4-6]
Kinematic viscosity is considered the key of fuel properties according to diesel and biodiesel fuel standards.
Biodiesel viscosity is usually higher than that of diesel, which results in longer liquid penetration and worse
atomization [7-9] compared with diesel fuel. The viscosity of biodiesel from different feedstocks varies with the
FAME composition and the viscosity of FAME increases with the chain length and the degree of saturation
[10]. Various feedstocks have been transesterificated to investigate their feasibility as the biodiesel sources
recently [11-17].
Experimental methods are often used in the determination of fuel properties [11, 18-22] which provide good and
high degree of accuracy results. This experimental determination of biodiesel fuel properties has to be
conducted in accordance with standard test methods which have been provided for in the different standards
world over. The cost of running these tests is high, and is technically challenging, energy and time consuming.
In a case in which these three issues are considered to be a minor issue, the availability of a well equipped
laboratory to perform these tests is scarce. Subject to the above, mathematical models [23, 24], statistical models
[25-30], neuro fuzzy [31-33] and artificial neural network [34-39] have been used in predicting the properties of
biodiesel including viscosity, density or cold flow properties.
This present study evaluated the efficiency of ANFIS and ANN in accurately predicting the kinematic viscosity
of saturated and unsaturated biodiesel for wide ranges of temperature and hydrocarbon chain length. The details
of the calculation method, numerical validation, and comparative statistical analysis are fully described in this
work. The ANFIS and ANN to be developed in this paper address a more extensive database that published in
other works.
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The adaptive neuro-fuzzy inference system (ANFIS) and Artificial neural networks (ANN) have been used
extensively in biodiesel properties modeling, due to their ability to model nonlinear systems efficiently. The
theoretical background of Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System
(ANFIS) are given in [40-43]. The main steps that were followed in this work to develop predictive models of
kinematic viscosity of biodiesel and fatty acid methyl esters (Biodiesel) are presented. Kinematic viscosity data
of different biodiesel samples at different temperatures were gathered from the literature [44-49]. The
experimental data was obtained from scientific publication (Table 1) to estimate the kinematic viscosity of

biodiesel.
Table 1. Kinematic Viscosity in mm?/s of FAMEs Data
T[K] C6:0 €80 C10:0 C12:0 C14:0 Cl41 C16:0 Cl61 C180 Cl8l1 Cl82 Cl183 C20:0 C22:0
263.15 55 9.92 14.77 21.33 141 1019
5.4 8.37 12.19 1722 118 887
4.04 7.01 10.15 1403 984 733
268.15 4.68 6.13 12.19 1166 847 659
27315 231 4.04 7 8.322  6.965
278.15 3.378 5.45 8.46  6.9658
3.49 8.3219  6.966
3.378 5.35 7.33 9869 7.3 5.53
28315 1179 1967 301  4.654 7.236 6
1913 3014 4635 7.2365  6.176
1931 3014 479 6.1773
4.364 6.1774
288.15 1084 1772 2689  4.093 4.73 5.341 851 643 5524
1769 2708  4.094 6.38 849 6355 514
271 407 6.43 55241
29315 101 161 2421 3627 5201 413 4.723 733 561 457
1012 159 2437 3.54 5.56 7379 5622 4972
1011 1628 2449 3641 723 558 484
1627 249 363 738 561 49722
245 364 5.6194
2.448 3.71 4.94 644 503 407
208.15 009412 1471 2196 3225 4611 4.214 6472 5017 4501
1504 2227 3261 46105 6.47 4.5011
223 329 3.37 3.806 5.72
3.2614 4.42 5724 453  3.88
303.15 0.8822 1.368 2.004 3892  4.12 4508  4.099
1.396 2037 2942 4.1643 45079  4.0989
139 205 295 4.0973
2036 2942 3.04 3.96 508 408 332
2.942 3.432 5099 4075 375
30815 083 1262 1832 2618  3.698 4.929 4.0504
1.3 1871 2668  3.697 3.7504
1.3001  1.87 2.69 273 3.064 451 365 3.9
1871  2.668 3.67 4573 3703  3.298
31095 081 1207 1765 2487  3.456 4.688 5881 445 364 327
31315 0785 117 168 2384  3.338 4.32 561 4721 3702 314 74 6955
0785 116 169 2433 3.3 4.414 5.867 3.2898
1215 1726 2431 273 438 285 558 4125 3.383  3.028
119 171 241 33381 4.4136 5867 4123 3103 3.0284
313.15 243 3.0303 3.102
2433 323 3.3826
07422 1099 1566 2139 3.0303 2977 257 5241 3742 3103 2811
1138 1589  2.229 29766 2229 52451 3121 2644 2434
1.138 2.228 2.263
31815 07014 1.028 1452 2014 2764 3.602 4.706 5.736
1.069 1485 205 2763 4.705 24343 5737
1.06 1184 1.918 2.1
Table 1. Continued
T[K] C6:0 C80 Cl10:0 C12:0 C140 Cl4l1 C16:0 Cl6:1 C180 Cl181 C182 C183 C20:0 C22:0
328.15 06668 0966 1353 1.859  2.533 328 206 4254 2871 2453 209 5154
1.006 1384 1.893 2.5327 1918 3666 2651 22832 21002 5.153
1.383 42537 26 225 20903
0.632 1263 1724 2323 2.998 3861 2457 2132 196 423 5692
333.15 0.6332 1276 1732 2.33 3001 1792  3.666 21507 19621 4.657 5691
1294 1724 2329 3.8611 1.9598
1291 1755 1.658 1.966  1.845
2.6 1.8455
1573 1.742
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The development of the proposed approaches was performed as follows. In the first step, the experimental
measurement data were separated into input data (independent variables, temperature, NC and NH of the
composition of methyl esters (saturated, C8:0, C10:0, C12:0, C14:0, C16:0, C18:0, C20:0, C22:0, C24:0, and
unsaturated, C16:1, C18:1, C18:2, C18:3, C20:1, C22:1,), and output data (dependent variable in term of
kinematic viscosity)). Subsequently, different approaches (ANFIS and ANN) were proposed to describe the
behavior of the kinematic viscosity, as a function of temperature and volume fraction of biodiesel. In this case,
the database was randomly divided into three groups with 60% to training, 20% to testing and 20% to checking
or validation. Since the input variables on the artificial neural network have different magnitude, a normalization
of them is required. We use a range between 0.1 and 0.9 according with the proposal of Khataee and Kasiri
[50,51], as follows:
o, = 082 —min® 0.1 1
no (max(&) —min(@)) + 0. M
where 0,, is the normalized input variable, the minimum (min) and maximum (max) values are the shown in

Table 2.
Table 2. Limit values for the input and output variables on ANFIS and ANN models
Limit Unit
Input Minimum Maximum

Temperature 263.15 333.15 K

Number of Carbon 7.00 23.00 -

Number of Hydrogen 14.00 46.00 -

Output

Viscosity 0.46 21.33 mm/s?

In general, the calculation methodology used in this work had three stages:

1. Collect experimental data from the literature to make a robust database;

2. Develop ANFIS/ANN models able to predict the kinematic viscosity of biodiesel

3. Implement a comparative study between the simulated and experimental properties.
Furthermore, a sensitivity analysis was applied to find the variables of greater influence on the response variable
(Figure 1). The Matlab2015 software was used for the application of the adaptive neuro-fuzzy inference system
(ANFIS) and artificial neural network (ANN) approaches.

Appraisal of the Developed Models

The developed ANFIS and ANN models were evaluated comprehensively for predicting the biodiesel properties
of biodiesel samples. The following statistical indicators were employed: correlation coefficients (R), coefficient
of determination (R?), mean squared error (MSE), root mean squared error (RMSE) and absolute average
deviation (AAD).

— Z;ﬂ(ap,i_ap,ave)-(ae,i_ap,ave) (2)
\/[E?(aui‘auave)z] [Z?(ae.i‘ap.ave)z]
R2=1-— 2:?:1(ae,i_ap,i)2 (3)
Z?=1(ap,i_ae,ave)2
1 2
MSE = =31 1(ac; — ap,) (4)
1 2
RMSE = \/;Z{;l(ae,i —ay;) (5)
n
_ @ QAcali — Qexp,i

AAD =

n aexp,i

(6)

where n is the number of experimental data, ap,; is the predicted values, ae, is the experimental values, aeave iS the
average experimental values, ap.ave is the average predicted values and i is the number of input variables.
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Figure 1. Algorithm used in this work for the development of the ANFIS and ANN models

1. RESULTS AND DISCUSSION

Adaptive Neuro—Fuzzy Inference System (ANFIS) Model for Saturated and Unsaturated FAMESs

The model was trained with part of the database derived from the experimental results of previous studies. The
database was first split into training data and testing data. The training data set was also split into two parts, a
training set (60%) and a checking set (20%). The use of checking sets in ANFIS learning beside the training set
is a recommended technique to guarantee model generalization and to avoid over-fitting the model to the
training data set.

In this study, by trial and error, the best number of membership functions for each input was determined as 5,
the membership grades takes the Triangular-shaped membership functions and the output part of each rule uses
a linear defuzzifier formula. In this research, two methods, hybrid and back propagation tested for generation
ANFIS that the results is presented in Table 3. The results show the training error in the hybrid method is lower
of back-propagation method. Therefore, the hybrid method has used for simulations. The developed ANFIS
model for predicting the kinematic viscosity at different temperature, NC and NH is shown in Figure 2.
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Table 3. The ANFIS information used in this study

Saturated FAMEs Unsaturated FAMEs
Hybrid pro?agglgtion Hybrid pro%ggl;tion
Epoch 1000 1000 1000 1000
Training error 0.0082 0.0088 0.0228 0.0237
Tasting error 0.0243 0.0345 0.0229 0.0264
Checking error 0.0218 0.0310 0.0540 0.0620
Number of nodes 286 286 286 286
Number of linear parameters 500 500 500 500
Number of nonlinear parameters 45 45 45 45
Number of fuzzy rules 125 125 125 125
(@, Anfis Model Structure o E
input inputmf e output

Click on each node to see detailed information | | [ Update ] [ Help J | Close [ |

Figure 2. Structure of ANFIS models

The three-dimensional surface plots of kinematic viscosity of biodiesel against temperature and number of
carbon atoms and number of hydrogen atom of biodiesel is depicted in Figure 3. The plot suggests strong
interaction between the variables with significant influence on the viscosity of biodiesel. From the Figure,
increasing in temperature leads to increase the viscosity of biodiesel.
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Figure 3. Surface viewer of ANFIS model for kinematic viscosity of saturated and unsaturated FAMESs

Avrtificial Neural Network (ANN) Model for Saturated and Unsaturated FAMES

The development and the training of the network model in this study were carried out using the MATLAB 2015.
In this study, the experimental data of biodiesel samples were randomly split into three data set, 60% in the
training set, 20% in the validation set and 20% in the test set. Training of the network was performed by using
the Levenberg—Marquardt, back-propagation algorithms. There is no general rule for the determination of the
optimum number of hidden layers and usually it is determined through trial and error method [52]. Therefore,
the number of neurons in the hidden layer was determined by trial and error test, where a mean squared error
greater than 1 x10* and a correlation coefficient higher than 0.95 was obtained. In addition, with the trial and
error method, training results showed that the ANN with two hidden layers has the best performance.
Consequently, the developed ANN model for predicting kinematic viscosity biodiesel blends is shown in Figure
4 and the training parameters can be found in Table 4. The developed network architecture has a 3-2-1
configuration with seven neurons in the input layer. Two hidden layers with varying neurons and seven neurons
in the output layer representing viscosity are used.

Temperature 4‘
NN

NC

N
” X
% B
i o
/ /‘ N

NH “//

Figure 4. Neural network architecture for three inputs and one output

Table 4. Neural network configuration for the training

Parameter Specification
Training Function Levenberg—Marquardt
Performance function Mean square error (MSE)
Activation function Tan-Sigmoid
Number of layers 2
Number of neurons 7
Normalized range 0.1t00.9
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Figure 5 illustrates a linear relation for the training, validation, testing and performance of the network with high
correlation coefficients (R) of kinematic viscosity. The straight lines in Figure 4.10 and 4.11 are the linear
relationships obtained between the output (predicted) and the target (experimental) data of viscosity used in this
study. The mean squared error (MSE) for saturated and Unsaturated Biodiesel network was 9.675x10 and
6.018x10*, respectively. The high coefficients of correlation (R) obtained during the training, validation and
testing of the viscosity network display very good relationship between the output and the experimental values
of viscosity.

Saturated FAMEs Unsaturated FAMEs
Training: R=0.99627 Validation: R=0.99799 Training: R=0.98217 Validation: R=0.9883
O Data 06 O Data ¥ 4 [ O Data 7
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Figure 5. Regression plots for saturated and unsaturated FAMES

Performance evaluation of ANFIS and ANN

The accuracy of the models obtained from ANFIS and ANN were examined by evaluating the values of both R?
and AAD%. The results (Table 5) showed that the two optimization tools gave good predictions due to the
values of R? and small values of AAD. However, ANFIS showed a clear lead over ANN because of higher value
of R? and smaller value of AAD. ANFIS was better than ANN in the modeling and optimization studies for
predicting the kinematic viscosity of saturated and unsaturated FAMEs.

Table 5. R and ADD of ANFIS and ANN models

Vol 06, Issue 09] | 2024

ANFIS models ANN models
System Temperature R? ADD Temperature R2 ADD
range [K] [%] range [K] [%]
Saturated FAMEs 263.15-373.15 0.988 0.74 263.15-373.15 0.952 1.74
Unsaturated FAMEs 263.15-363.15 0.974 2.43 263.15-363.15 0.961 4.43

V. CONCLUSION AND FUTURE WORKS

In this study, an ANFIS and ANN methods were developed to predict the kinematic viscosity of biodiesel at
various temperatures with the experimental data collected from the literature. ANFIS and ANN methods
compared with the experimental data. The results showed that there is an excellent agreement between the
experimental data and modeling data, with average errors very low. Comparison of the ANFIS and ANN
predictions and the experimental results demonstrated that both models provide good quality predictions in
terms of input variables. The results confirmed that the ANFIS model was more robust and accurate in
predicting the values of kinematic viscosity of biodiesel blends compared to the ANN model. ANFIS model has
performed more consistently than ANN and can be used as a very powerful and flexible tool for modeling the
optimization process.

In future, ANFIS model can also be developed for predicting the kinematic viscosity, density and cold flow
properties of biodiesel blends at various volume fractions of biodiesel and temperature.
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