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ABSTRACT 

The aim of this paper is to introduce and study two new classes of spaces, namely Rw-normal and rw- regular 

spaces and obtained their properties by utilizing  rw-closed sets. 
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I. INTRODUCTION 
Maheshwari and Prasad[8] introduced the new class of spaces called s-normal spaces using semi-open sets. It was 

further studied by Noiri and Popa[10],Dorsett[6] and Arya[1]. Munshi[9], introduced g-regular and g- normal 

spaces using g-closed sets of Levine[7]. Later, Benchalli et al [3] and Shik John[12] studied the concept of g* - 

preregular, g* - pre normal and w- normal, w-regular spaces in topological spaces. Recently, Benchalli et al [2,11] 

introduced and studied the properties of  rw-closed sets and rw-continuous functions. 

  

II. PRELIMINARIES 
Throughout this paper space (X, τ) and (Y, σ) (or simply X and Y) always denote topological space on which no 

separation axioms are assumed unless explicitly stated. For a subset A of a space X, Cl(A), Int(A), Ac , and 𝛼-

Cl(A), denote the Closure of A, Interior of A and Compliment of A and 𝛼-closure of A in X respectively. 

 

Definition 2.1: A subset A of a topological space (X, τ) is called 

i. W-closed set[ 12] if cl(A)  U whenever A U and U is semi-open in X. 

ii. Generalized closed set(briefly g-closed) [7] if cl(A)U  

whenever A  U and U is open in X. 

 

Definition 2.2 : A topological space X is said to be a 

1. g-regular[10], if for each g-closed set F of X and each point x ∉F,there exists disjoint open sets U and V 

such that F⊆U and x 𝜖 V . 

2. 𝛼 - regular [4], if for each 𝛼 - closed set F of X and each point x ∉ F, there exists disjoint  𝛼 -  open sets 

U and V such that F ⊆ V and x 𝜖 U. 

3. w-regular[12], if for each closed set F of X and each point x ∉ F, there exists disjoint w-open sets U and 

V such that F⊆U and x𝜖 V. 

 

Definition 2.3. A topological space X is said to be a 

1. g- normal [10], if for any pair of disjoint g-closed sets A and B, there exists disjoint open sets U and V 

such that A⊆U and B⊆V . 

2. 𝛼-normal [4], if for any pair of disjoint 𝛼 − closed sets A and B, there exists dis-joint  𝛼 -open sets U 

and V such that A⊆U and B⊆V . 

3. w-normal [12], if for any pair of disjoint  w -closed sets A and B, there exists disjoint open sets U and V 

such that A ⊆ U and B⊆V. 

 

 

 

Definition 2.4: [2] A topological space X is called Trw - space if every rw-closed set in it is closed set. 

 

Definition 2.5:A map f: (X, τ)            (Y, τ) is said to be  

i. rw-continuous map[11]if f -1(V)is a rw-closed set of (X, τ) for every closed set V of (Y, τ). 

ii. rw-irresolute map[11]if f -1(V)is a rw-closed set of (X, τ) for every rw-closed set V of (Y, τ). 
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III. RW -REGULAR SPACES 
In this section, we introduce a new class of spaces called rw-regular spaces using Rw-closed sets and obtain some 

of their characterizations. 

 

Definition 3.1. A topological space X is said to be rw-regular if for each rw closed set F and a point x ∉ F, there 

exist disjoint open sets G and H such that F⊆G and x 𝜖 H. 

We have the following interrelationship between rw-regularity and regularity. 

 

Theorem 3.2. Every rw-regular space is regular. 

 

Proof: Let X be a rw-regular space. Let F be any closed set in X and a point x∉X such that x∉F. By [2], F is rw-

closed and x ∉ F. Since X is a rw-regular space, there exists a pair of disjoint open sets G and H such that F ⊆ G 

and x 𝜖 H. Hence X is a regular space. 

 

Remark 3.3. If X is a regular space and Trw space, then X is rw regular We have the following characterization. 

 

Theorem 3.4. The following statements are equivalent for a topological space X 

(i) X is a rw regular space 

(ii) For each x 𝜖 X and each rw-open neighbourhood U of x there exists an open neighbourhood N of x such that 

cl(N)⊆U. 

 

Proof: (i)         (ii): Suppose X is a rw regular space. Let U be any rw neighbour-hood of x. Then there exists rw 

open set G such that x 𝜖 G ⊆U. Now X –G is rw closed set and x ∉ X - G. Since X is rw regular, there exist open 

sets M and N such that X -G⊆M, x 𝜖 N and M ∩ N = 𝜑 and so N ⊆X-M. Now cl(N) ⊆  cl(X -M) = X -M and X 

-M ⊆ M. This implies X -M⊆ U. Therefore   cl(N)⊆U. 

 

(ii)         (i): Let F be any rw closed set in X and x 𝜖 X -F and X - F is a Rw-open and so X - F is a rw-neighbourhood 

of x. By hypothesis, there exists an open neighbourhood N of x such that x 𝜖 N and cl(N) ⊆ X - F. This implies F 

⊆ X - cl(N) is an open set containing F and N ∩ f(X - cl(N)= 𝜑 . Hence X is rw- regular space. 

We have another characterization of  rw-regularity in the following. 

 

Theorem 3.5: A topological space X is rw-regular if and only if for each rw-closed set F of X and each x 𝜖 X - F 

there exist open sets G and H of X such that x 𝜖 G, F⊆H and cl(G) ∩ cl(H) = ∅. 

 

Proof: Suppose X is rw-regular space. Let F be a rw-closed set in X with x ∉ F.Then there exists open sets M and 

H of X such that x 𝜖 M, F ⊆H and M∩H =∅. This implies M∩cl(H) = ∅.As X is rw-regular, there exist open sets 

U and V such that x 𝜖 U, cl(H)⊆V and U∩V = ∅. so cl(U)∩V = ∅.Let G = M ∩ U, then G and H are open sets of 

X such that x𝜖G, F ⊆ H and cl(H) ∩  cl(H) =∅ . 

Conversely, if for each rw-closed set F of X and each x 𝜖 X -F there exists open sets G and H such that x 𝜖 G, F⊆ 

H and cl(H) ∩cl(H) = ∅ .This implies x 𝜖 G,F⊆H and G  ∩ H =  ∅. Hence X is rw- regular. 

Now we prove that rw- regularity is a heriditary property. 

 

Theorem 3.6. Every subspace of a rw-regular space is rw-regular. 

 

Proof: Let X be a rw- regular space. Let Y be a subspace of X. Let x 𝜖 Y and F be a rw-closed set in Y such that 

x∉F. Then there is a closed set and so rw-closed set A of X with F = Y ∩ A and x ∉A. Therefore we have x 𝜖 X, 

A is rw – closed in X such that x∉A. Since X is rw- regular, there exist open sets G and H such that x  𝜖 G, A⊆H 

and G∩H = 𝜑. Note that Y ∩ G and Y ∩ H are open sets in Y .Also x 𝜖 G and x 𝜖 Y, which implies x 𝜖 Y ∩G and 

A ⊆ H implies Y∩ G ⊆Y ∩ H,F⊆Y  ∩ H. Also (Y  ∩ G) ∩  (Y  ∩  H) = 𝜑. Hence Y is rw-regular space. 

We have yet another characterization of rw -regularity in the following. 

 

Theorem 3.7 : The following statements about a topological space X are equivalent: 

(i) X is rw -regular 

(ii) For each x 𝜖 X and each rw-open set U in X such that x 𝜖 U there exists an open set V in X such that x 𝜖  

V⊆cl(V)⊆U. 

(iii) For each point x 𝜖X and for each rw-closed set A with x ∉ A, there exists an open set V containing x such 

that cl(V)∩A = 𝜑. 
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Proof: (i)        (ii): Follows from Theorem 3.5. 

(ii)       (iii): Suppose (ii) holds. Let x 𝜖 X and A be an rw-closed set of X such that x ∉ A.Then X - A is a rw-open 

set with x 𝜖 X -A. By hypothesis, there exists an open set V such that x 𝜖 V ⊆ cl(V ) ⊆  X - A. That is x 𝜖 V , V⊆ 

cl(A) and cl(A)  ⊆  X - A. So x  𝜖 V and cl(V)∩A = 𝜑. 

(iii)      (i): Let x 𝜖 X and U be an rw-open set in X such that x 𝜖 U. Then X - U is an rw closed set and x∉  X - U. 

Then by hypothesis, there exists an open set V containing x such that cl(A) ∩(X -U) = Á. Therefore x 𝜖 V , cl(V 

)⊆U so x 𝜖 V⊆ cl(V)⊆ U. 

The invariance of rw-regularity is given in the following. 

 

Theorem 3.8:  Let f : X        Y be a bijective, rw-irresolute and open map from a  rw- regular space X into a 

topological space Y , then Y is rw-regular. 

 

Proof: Let y 𝜖 Y and F be a rwclosed set in Y with y ∉ F. Since F is rw- irresolute, f  - 1(F) is rw-closed set in X. 

Let f(x) = y so that x = f -1 (y) and x ∉  f - 1(F). Again X is rw-regular space, there exist open sets U and V such 

that x 𝜖 U and f - 1(F) ⊆  G, U ∩  V = 𝜑. Since f is open and bijective, we have y  f(U),F ⊆ f(V ) and f(U) ∩ f(V) 

= f(U∩V ) = f(𝜑) = 𝜑 . Hence Y is rw-regular space. 

 

Theorem 3.9. Let f : X        Y be a bijective, rw-closed and open map from a topological space X into a rw-regular 

space Y . If X is Trw space, then X is rw-regular. 

 

Proof: Let x 𝜖 X and F be an rw-closed set in X with x  ∉ F. Since X is Trw space,F is closed in X. Then f(F) is 

rwclosed set with f(x)  ∉ f(F) in Y , since f is  rw- closed. As Y is rw-regular, there exist open sets U and V such 

that x 𝜖  U and f(x) 𝜖 U and f(F) ⊆V . Therefore x 𝜖 f - 1(U) and F  ⊆ f - 1(V ).  Hence X is rw-regular space. 

 

Theorem 3.10. If f : X        Y is w-irresolute, continuous injection and Y is rw-regular space,then X is rw- regular. 

 

Proof: Let F be any closed set in X with x∉ F. Since f is w-irresolute, f is rw- closed set in Y and f(x) 𝜖 f(F). Since 

Y is rw- regular,there exists open sets U and V such that f(x)  𝜖 U and f(F) ⊆ V . Thus x 𝜖 f - 1(U),F  ⊆ f - 1(V ) 

and f -1 (U) ∩ f -1(V ) = 𝜑. Hence X is rw- regular space. 

 

IV. RW-NORMAL SPACES 

In this section, we introduce the concept of rwnormal spaces and study some of their characterizations. 

 

Definition 4.1. A topological space X is said to be rw-normal if for each pair of disjoint rw- closed sets A and B 

in X, there exists a pair of disjoint open sets U and V in X such that A ⊆ U and B ⊆V  

We have the following interrelationship. 

 

Theorem 4.2. Every rw-normal space is normal. 

 

Proof: Let X be a rw-normal space. Let A and B be a pair of disjoint closed sets in X. From [2], A and B are rw- 

closed sets in X. Since X is rw-normal, there exists a pair of disjoint open sets G and H in X such that A  ⊆ G and 

B ⊆ H. Hence X is normal.  

 

Remark 4.3. The converse need not be true in general as seen from the following 

example. 

 

Example 4.4. Let X = Y ={a,b,c,d},τ ={X, ∅,{a},{c},{a,c},{b,c,d}} Then 

the space X is normal but not rw - normal, since the pair of disjoint rw - closed sets namely, A = {a,d} and B = 

{b,c} for which there do not exists disjoint open sets G and H such that A ⊆ G and B⊆ H. 

 

Remark 4.5.:If X is normal and T rw-space, then X is rw-normal. 

Hereditary property of  rw- normality is given in the following. 

 

Theorem 4.6. A rw - closed subspace of a rw - normal space is rw -normal. We have the following 

characterization. 

 

Theorem 4.7. The following statements for a topological space X are equivalent: 

(i) X is rw- normal 

(ii) For each rw - closed set A and each rw - open set U such that  

     A⊆U, there exists an open set V such that A⊆V⊆cl(V)⊆U 
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(iii) For any rw-closed sets A, B, there exists an open set V such that A⊆V and cl(V)∩B = 𝜑. 

(iv) For each pair A, B of disjoint  rw-closed sets there exist open sets U and V such that A ⊆ U,B ⊆V and cl(U) ∩ 

cl(V ) = 𝜑. 

 

Proof: (i)       (ii): Let A be a rw-closed set and U be a rw-open set such that A⊆ U.Then A and X - U are disjoint 

rw-closed sets in X. Since X is rw-normal , there exists a pair of disjoint open sets V and W in X such that A ⊆ V 

and X -U ⊆W. Now X -W ⊆ X - (X -U), so X -W⊆  U also V∩ W =  𝜑. implies V ⊆ X -W, so cl(V ) ⊆ cl(X -W) 

which implies cl(V ) ⊆  X -W. Therefore cl(V ) ⊆ X -W⊆  U. So cl(V ) ⊆ U. Hence A  ⊆ V ⊆ cl(V ) ⊆ U. 

 

(ii)        (iii): Let A and B be a pair of disjoint rwclosed sets in X. Now A∩ B = 𝜑,so A⊆  X -B, where A is rw-

closed an⊆ d X - B is rw-open . Then by (ii) there exists an open set V such that A⊆V⊆cl(V)⊆ X - B. Now cl(V) 

⊆ X - B implies cl(V ) ∩  B = 𝜑 . Thus A ⊆  V and cl(V)∩B = 𝜑. 

 

(iii)          (iv): Let A and B be a pair of disjoint rw-closed sets in X.Then from (iii) there exists an open set U such 

that A⊆U and cl(U) ∩ B =  𝜑. Since cl(V ) is closed, so rw-closed set.Therefore cl(V ) and B are disjoint rwclosed 

sets in X. By hypothesis, there exists an open set V , such that B⊆V and cl(U) ∩cl(V ) = 𝜑. 

 

(iv)         (i): Let A and B be a pair of disjoint rw-closed sets in X.Then from (iv) there exist an open sets U and V 

in X such that A⊆U, B⊆V and cl(U) ∩ cl(V ) = 𝜑. So A ⊆ U , B⊆V and U∩V = 𝜑.Hence X  rw-normal. 

 

Theorem 4.8. Let X be a topological space. Then X is rw-normal if and only if for any pair A, B of disjoint rw-

closed sets there exist open sets U and V of X such that A⊆U,B⊆V and cl(U) ∩cl(V ) = 𝜑. 

 

Theorem 4.9. Let X be a topological space. Then the following are equivalent: 

(i) X is normal 

(ii) For any disjoint closed sets A and B, there exist disjoint rw - open sets U and V 

such that A⊆U,B⊆V . 

(iii) For any closed set A and any open set V such that A⊆ V, there exists an rw -open set U of X such that A⊆U⊆ 

𝛼cl(U) ⊆ V . 

 

Proof:  
(i)         (ii): Suppose X is normal. Since every open set is rw-open [2], (ii) follows. 

(ii)          (iii): Suppose (ii) holds. Let A be a closed set and V be an open set containing A. Then A and X - V are 

disjoint closed sets. By (ii), there exist disjoint rw- open sets U and W such that A⊆U and X - V ⊆ W, since X -

V is closed, so rw - closed. From [2], we have X -V⊆ 𝛼-int(W) and U ∩  𝛼-int(W) = 𝜑.and so wehave 𝛼-cl(U) ∩ 

𝛼-int(W) = 𝜑. Hence A ⊆ U ⊆ 𝛼-cl(U) ⊆ X – 𝛼-int(W)⊆V . Thus A ⊆ U ⊆ 𝛼-cl(U) ⊆ V . 

(iii)         (i): Let A and B be a pair of disjoint closed sets of X.Then A ⊆ X - B and X -B is open. There exists a 

rw - open set G of X such that A ⊆  G  ⊆ 𝛼-cl(G) ⊆ X-B. Since A is closed, it is w- closed, we have A ⊆ 𝛼 -

int(G). Take U = int(cl(int(𝛼-int(G))))and V = int(cl(int(X –𝛼-cl(G)))). Then U and V are disjoint open sets of X 

such that A ⊆ U and B ⊆  V . Hence X is normal. 

 

We have the following characterization of rw - normality and rw- normality. 

 

Theorem 4.10: Let X be a topological space. Then the following are equivalent: 

(i) X is 𝛼-normal. 

(ii) For any disjoint closed sets A and B, there exist disjoint rw - open sets U and V such that A⊆ U,B⊆V and U∩ 

V = 𝜑. 

 

Proof:  

(i)       (ii): Suppose X is 𝛼- normal. Let A and B be a pair of disjoint closed sets of X. Since X is 𝛼 -normal,there 

exist disjoint 𝛼 − open sets U and V such that A⊆U and B⊆V and U ∩ V = 𝜑. 

(ii)        (i):Let A and B be a pair of disjoint closed sets of X.The by hypothesis there exist disjoint rw- open sets 

U and V such that A⊆U and B ⊆ V and U  ∩V = 𝜑 .Since from [2], A⊆ 𝛼-intU and B ⊆ 𝛼 − int(V)and 𝛼 –int 

U∩ 𝛼 -intV = 𝜑.  Hence X is 𝛼 -normal. 

 

Theorem 4.11. Let X bea 𝛼- normal, then the following hold good: 

(i)For each closed set A and every  rw - open set B such that A⊆B ther exists a α open set U such that A⊆U⊆ α-

cl(U)⊆ B. 
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(ii) For every rw-closed set A and every open set B containing A, there exist a α-open set U such that A⊆U⊆ α-

cl(U)⊆B 
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