

Investigating RW-Separation Axioms: An Analytical Approach in Topological Spaces

Ramesh H. Bhat*¹ and Kavita R. Kamat²

¹*Assistant Professor, Department of Physics, Vishwakarma Institute of Technology, Pune.

²Assistant Professor, Department of Mechanical Engineering, Smt. Kashibai Navale College of Engineering, Pune.

ABSTRACT

The aim of this paper is to introduce and study two new classes of spaces, namely Rw-normal and rw- regular spaces and obtained their properties by utilizing rw-closed sets.

KEYWORDS: Rw- closed set, Rw-continuous function, Rw-Separation axioms.

I. INTRODUCTION

Maheshwari and Prasad[8] introduced the new class of spaces called s-normal spaces using semi-open sets. It was further studied by Noiri and Popa[10], Dorsett[6] and Arya[1]. Munshi[9], introduced g-regular and g- normal spaces using g-closed sets of Levine[7]. Later, Benchalli et al [3] and Shik John[12] studied the concept of g* - preregular, g* - pre normal and w- normal, w-regular spaces in topological spaces. Recently, Benchalli et al [2,11] introduced and studied the properties of rw-closed sets and rw-continuous functions.

II. PRELIMINARIES

Throughout this paper space (X, τ) and (Y, σ) (or simply X and Y) always denote topological space on which no separation axioms are assumed unless explicitly stated. For a subset A of a space X, $\text{Cl}(A)$, $\text{Int}(A)$, A^c , and $\alpha\text{-Cl}(A)$, denote the Closure of A, Interior of A and Compliment of A and α -closure of A in X respectively.

Definition 2.1: A subset A of a topological space (X, τ) is called

- i. W-closed set[12] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X.
- ii. Generalized closed set(briefly g-closed) [7] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

Definition 2.2 : A topological space X is said to be a

- 1. g-regular[10], if for each g-closed set F of X and each point $x \notin F$, there exists disjoint open sets U and V such that $F \subseteq U$ and $x \in V$.
- 2. α - regular [4], if for each α - closed set F of X and each point $x \notin F$, there exists disjoint α - open sets U and V such that $F \subseteq V$ and $x \in U$.
- 3. w-regular[12], if for each closed set F of X and each point $x \notin F$, there exists disjoint w-open sets U and V such that $F \subseteq U$ and $x \in V$.

Definition 2.3. A topological space X is said to be a

- 1. g- normal [10], if for any pair of disjoint g-closed sets A and B, there exists disjoint open sets U and V such that $A \subseteq U$ and $B \subseteq V$.
- 2. α -normal [4], if for any pair of disjoint α - closed sets A and B, there exists disjoint α - open sets U and V such that $A \subseteq U$ and $B \subseteq V$.
- 3. w-normal [12], if for any pair of disjoint w -closed sets A and B, there exists disjoint open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

Definition 2.4: [2] A topological space X is called T_{rw} - space if every rw-closed set in it is closed set.

Definition 2.5: A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be

- i. rw-continuous map[11]if $f^{-1}(V)$ is a rw-closed set of (X, τ) for every closed set V of (Y, σ) .
- ii. rw-irresolute map[11]if $f^{-1}(V)$ is a rw-closed set of (X, τ) for every rw-closed set V of (Y, σ) .

III. RW -REGULAR SPACES

In this section, we introduce a new class of spaces called rw-regular spaces using Rw-closed sets and obtain some of their characterizations.

Definition 3.1. A topological space X is said to be rw-regular if for each rw closed set F and a point $x \notin F$, there exist disjoint open sets G and H such that $F \subseteq G$ and $x \in H$.

We have the following interrelationship between rw-regularity and regularity.

Theorem 3.2. Every rw-regular space is regular.

Proof: Let X be a rw-regular space. Let F be any closed set in X and a point $x \notin F$ such that $x \notin F$. By [2], F is rw-closed and $x \notin F$. Since X is a rw-regular space, there exists a pair of disjoint open sets G and H such that $F \subseteq G$ and $x \in H$. Hence X is a regular space.

Remark 3.3. If X is a regular space and T_{rw} space, then X is rw regular We have the following characterization.

Theorem 3.4. The following statements are equivalent for a topological space X

- (i) X is a rw regular space
- (ii) For each $x \in X$ and each rw-open neighbourhood U of x there exists an open neighbourhood N of x such that $cl(N) \subseteq U$.

Proof: (i) \rightarrow (ii): Suppose X is a rw regular space. Let U be any rw neighbourhood of x . Then there exists rw open set G such that $x \in G \subseteq U$. Now $X - G$ is rw closed set and $x \notin X - G$. Since X is rw regular, there exist open sets M and N such that $X - G \subseteq M$, $x \in N$ and $M \cap N = \emptyset$ and so $N \subseteq X - M$. Now $cl(N) \subseteq cl(X - M) = X - M$ and $X - M \subseteq G$. This implies $X - M \subseteq U$. Therefore $cl(N) \subseteq U$.

(ii) \rightarrow (i): Let F be any rw closed set in X and $x \in X - F$ and $X - F$ is a Rw-open and so $X - F$ is a rw-neighbourhood of x . By hypothesis, there exists an open neighbourhood N of x such that $x \in N$ and $cl(N) \subseteq X - F$. This implies $F \subseteq X - cl(N)$ is an open set containing F and $N \cap f(X - cl(N)) = \emptyset$. Hence X is rw- regular space.

We have another characterization of rw-regularity in the following.

Theorem 3.5: A topological space X is rw-regular if and only if for each rw-closed set F of X and each $x \in X - F$ there exist open sets G and H of X such that $x \in G$, $F \subseteq H$ and $cl(G) \cap cl(H) = \emptyset$.

Proof: Suppose X is rw-regular space. Let F be a rw-closed set in X with $x \notin F$. Then there exists open sets M and H of X such that $x \in M$, $F \subseteq H$ and $M \cap H = \emptyset$. This implies $M \cap cl(H) = \emptyset$. As X is rw-regular, there exist open sets U and V such that $x \in U$, $cl(H) \subseteq V$ and $U \cap V = \emptyset$. so $cl(U) \cap V = \emptyset$. Let $G = M \cap U$, then G and H are open sets of X such that $x \in G$, $F \subseteq H$ and $cl(G) \cap cl(H) = \emptyset$.

Conversely, if for each rw-closed set F of X and each $x \in X - F$ there exists open sets G and H such that $x \in G$, $F \subseteq H$ and $cl(H) \cap cl(G) = \emptyset$. This implies $x \in G$, $F \subseteq H$ and $G \cap H = \emptyset$. Hence X is rw- regular.

Now we prove that rw- regularity is a hereditary property.

Theorem 3.6. Every subspace of a rw-regular space is rw-regular.

Proof: Let X be a rw- regular space. Let Y be a subspace of X . Let $x \in Y$ and F be a rw-closed set in Y such that $x \notin F$. Then there is a closed set and so rw-closed set A of X with $F = Y \cap A$ and $x \notin A$. Therefore we have $x \in X$, A is rw – closed in X such that $x \notin A$. Since X is rw- regular, there exist open sets G and H such that $x \in G$, $A \subseteq H$ and $G \cap H = \emptyset$. Note that $Y \cap G$ and $Y \cap H$ are open sets in Y . Also $x \in G$ and $x \in Y$, which implies $x \in Y \cap G$ and $A \subseteq H$ implies $Y \cap G \subseteq Y \cap H$, $F \subseteq Y \cap H$. Also $(Y \cap G) \cap (Y \cap H) = \emptyset$. Hence Y is rw-regular space.

We have yet another characterization of rw -regularity in the following.

Theorem 3.7 : The following statements about a topological space X are equivalent:

- (i) X is rw -regular
- (ii) For each $x \in X$ and each rw-open set U in X such that $x \in U$ there exists an open set V in X such that $x \in V \subseteq cl(V) \subseteq U$.
- (iii) For each point $x \in X$ and for each rw-closed set A with $x \notin A$, there exists an open set V containing x such that $cl(V) \cap A = \emptyset$.

Proof: (i) \rightarrow (ii): Follows from Theorem 3.5.

(ii) \rightarrow (iii): Suppose (ii) holds. Let $x \in X$ and A be an rw-closed set of X such that $x \notin A$. Then $X - A$ is a rw-open set with $x \in X - A$. By hypothesis, there exists an open set V such that $x \in V \subseteq \text{cl}(V) \subseteq X - A$. That is $x \in V$, $V \subseteq \text{cl}(A)$ and $\text{cl}(A) \subseteq X - A$. So $x \in V$ and $\text{cl}(V) \cap A = \emptyset$.

(iii) \rightarrow (i): Let $x \in X$ and U be an rw-open set in X such that $x \in U$. Then $X - U$ is an rw-closed set and $x \notin X - U$. Then by hypothesis, there exists an open set V containing x such that $\text{cl}(A) \cap (X - U) = \emptyset$. Therefore $x \in V$, $\text{cl}(V) \subseteq U$ so $x \in V \subseteq \text{cl}(V) \subseteq U$.

The invariance of rw-regularity is given in the following.

Theorem 3.8: Let $f : X \rightarrow Y$ be a bijective, rw-irresolute and open map from a rw-regular space X into a topological space Y , then Y is rw-regular.

Proof: Let $y \in Y$ and F be a rw-closed set in Y with $y \notin F$. Since F is rw-irresolute, $f^{-1}(F)$ is rw-closed set in X . Let $f(x) = y$ so that $x = f^{-1}(y)$ and $x \notin f^{-1}(F)$. Again X is rw-regular space, there exist open sets U and V such that $x \in U$ and $f^{-1}(F) \subseteq G$, $U \cap V = \emptyset$. Since f is open and bijective, we have $y \in f(U)$, $F \subseteq f(V)$ and $f(U) \cap f(V) = f(U \cap V) = f(\emptyset) = \emptyset$. Hence Y is rw-regular space.

Theorem 3.9. Let $f : X \rightarrow Y$ be a bijective, rw-closed and open map from a topological space X into a rw-regular space Y . If X is T_{rw} space, then X is rw-regular.

Proof: Let $x \in X$ and F be an rw-closed set in X with $x \notin F$. Since X is T_{rw} space, F is closed in X . Then $f(F)$ is rw-closed set with $f(x) \notin f(F)$ in Y , since f is rw-closed. As Y is rw-regular, there exist open sets U and V such that $x \in U$ and $f(x) \in U$ and $f(F) \subseteq V$. Therefore $x \in f^{-1}(U)$ and $F \subseteq f^{-1}(V)$. Hence X is rw-regular space.

Theorem 3.10. If $f : X \rightarrow Y$ is w-irresolute, continuous injection and Y is rw-regular space, then X is rw-regular.

Proof: Let F be any closed set in X with $x \notin F$. Since f is w-irresolute, f is rw-closed set in Y and $f(x) \in f(F)$. Since Y is rw-regular, there exists open sets U and V such that $f(x) \in U$ and $f(F) \subseteq V$. Thus $x \in f^{-1}(U)$, $F \subseteq f^{-1}(V)$ and $f^{-1}(U) \cap f^{-1}(V) = \emptyset$. Hence X is rw-regular space.

IV. RW-NORMAL SPACES

In this section, we introduce the concept of rwnormal spaces and study some of their characterizations.

Definition 4.1. A topological space X is said to be rw-normal if for each pair of disjoint rw-closed sets A and B in X , there exists a pair of disjoint open sets U and V in X such that $A \subseteq U$ and $B \subseteq V$. We have the following interrelationships.

Theorem 4.2. Every rw-normal space is normal.

Proof: Let X be a rw-normal space. Let A and B be a pair of disjoint closed sets in X . From [2], A and B are rw-closed sets in X . Since X is rw-normal, there exists a pair of disjoint open sets G and H in X such that $A \subseteq G$ and $B \subseteq H$. Hence X is normal.

Remark 4.3. The converse need not be true in general as seen from the following example.

Example 4.4. Let $X = Y = \{a, b, c, d\}$, $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, c\}, \{b, c, d\}\}$. Then the space X is normal but not rw-normal, since the pair of disjoint rw-closed sets namely, $A = \{a, d\}$ and $B = \{b, c\}$ for which there do not exist disjoint open sets G and H such that $A \subseteq G$ and $B \subseteq H$.

Remark 4.5: If X is normal and T_{rw} -space, then X is rw-normal. Hereditary property of rw-normality is given in the following.

Theorem 4.6. A rw-closed subspace of a rw-normal space is rw-normal. We have the following characterization.

Theorem 4.7. The following statements for a topological space X are equivalent:

- (i) X is rw-normal
- (ii) For each rw-closed set A and each rw-open set U such that $A \subseteq U$, there exists an open set V such that $A \subseteq V \subseteq \text{cl}(V) \subseteq U$

- (iii) For any rw-closed sets A, B , there exists an open set V such that $A \subseteq V$ and $\text{cl}(V) \cap B = \varphi$.
- (iv) For each pair A, B of disjoint rw-closed sets there exist open sets U and V such that $A \subseteq U, B \subseteq V$ and $\text{cl}(U) \cap \text{cl}(V) = \varphi$.

Proof: (i) \rightarrow (ii): Let A be a rw-closed set and U be a rw-open set such that $A \subseteq U$. Then A and $X - U$ are disjoint rw-closed sets in X . Since X is rw-normal, there exists a pair of disjoint open sets V and W in X such that $A \subseteq V$ and $X - U \subseteq W$. Now $X - W \subseteq X - (X - U)$, so $X - W \subseteq U$ also $V \cap W = \varphi$. implies $V \subseteq X - W$, so $\text{cl}(V) \subseteq \text{cl}(X - W)$ which implies $\text{cl}(V) \subseteq X - W$. Therefore $\text{cl}(V) \subseteq X - W \subseteq U$. So $\text{cl}(V) \subseteq U$. Hence $A \subseteq V \subseteq \text{cl}(V) \subseteq U$.

(ii) \rightarrow (iii): Let A and B be a pair of disjoint rw-closed sets in X . Now $A \cap B = \varphi$, so $A \subseteq X - B$, where A is rw-closed and $X - B$ is rw-open. Then by (ii) there exists an open set V such that $A \subseteq V \subseteq \text{cl}(V) \subseteq X - B$. Now $\text{cl}(V) \subseteq X - B$ implies $\text{cl}(V) \cap B = \varphi$. Thus $A \subseteq V$ and $\text{cl}(V) \cap B = \varphi$.

(iii) \rightarrow (iv): Let A and B be a pair of disjoint rw-closed sets in X . Then from (iii) there exists an open set U such that $A \subseteq U$ and $\text{cl}(U) \cap B = \varphi$. Since $\text{cl}(V)$ is closed, so rw-closed set. Therefore $\text{cl}(V)$ and B are disjoint rw-closed sets in X . By hypothesis, there exists an open set V , such that $B \subseteq V$ and $\text{cl}(U) \cap \text{cl}(V) = \varphi$.

(iv) \rightarrow (i): Let A and B be a pair of disjoint rw-closed sets in X . Then from (iv) there exist an open sets U and V in X such that $A \subseteq U, B \subseteq V$ and $\text{cl}(U) \cap \text{cl}(V) = \varphi$. So $A \subseteq U, B \subseteq V$ and $U \cap V = \varphi$. Hence X rw-normal.

Theorem 4.8. Let X be a topological space. Then X is rw-normal if and only if for any pair A, B of disjoint rw-closed sets there exist open sets U and V of X such that $A \subseteq U, B \subseteq V$ and $\text{cl}(U) \cap \text{cl}(V) = \varphi$.

Theorem 4.9. Let X be a topological space. Then the following are equivalent:

- (i) X is normal
- (ii) For any disjoint closed sets A and B , there exist disjoint rw-open sets U and V such that $A \subseteq U, B \subseteq V$.
- (iii) For any closed set A and any open set V such that $A \subseteq V$, there exists an rw-open set U of X such that $A \subseteq U \subseteq \text{acl}(U) \subseteq V$.

Proof:

- (i) \rightarrow (ii): Suppose X is normal. Since every open set is rw-open [2], (ii) follows.
- (ii) \rightarrow (iii): Suppose (ii) holds. Let A be a closed set and V be an open set containing A . Then A and $X - V$ are disjoint closed sets. By (ii), there exist disjoint rw-open sets U and W such that $A \subseteq U$ and $X - V \subseteq W$, since $X - V$ is closed, so rw-closed. From [2], we have $X - V \subseteq \alpha\text{-int}(W)$ and $U \cap \alpha\text{-int}(W) = \varphi$. and so we have $\alpha\text{-cl}(U) \cap \alpha\text{-int}(W) = \varphi$. Hence $A \subseteq U \subseteq \alpha\text{-cl}(U) \subseteq X - \alpha\text{-int}(W) \subseteq V$. Thus $A \subseteq U \subseteq \alpha\text{-cl}(U) \subseteq V$.
- (iii) \rightarrow (i): Let A and B be a pair of disjoint closed sets of X . Then $A \subseteq X - B$ and $X - B$ is open. There exists a rw-open set G of X such that $A \subseteq G \subseteq \alpha\text{-cl}(G) \subseteq X - B$. Since A is closed, it is w-closed, we have $A \subseteq \alpha\text{-int}(G)$. Take $U = \text{int}(\text{cl}(\text{int}(\alpha\text{-int}(G))))$ and $V = \text{int}(\text{cl}(\text{int}(X - \alpha\text{-cl}(G))))$. Then U and V are disjoint open sets of X such that $A \subseteq U$ and $B \subseteq V$. Hence X is normal.

We have the following characterization of rw-normality and rw-normality.

Theorem 4.10: Let X be a topological space. Then the following are equivalent:

- (i) X is α -normal.
- (ii) For any disjoint closed sets A and B , there exist disjoint rw-open sets U and V such that $A \subseteq U, B \subseteq V$ and $U \cap V = \varphi$.

Proof:

- (i) \rightarrow (ii): Suppose X is α -normal. Let A and B be a pair of disjoint closed sets of X . Since X is α -normal, there exist disjoint α -open sets U and V such that $A \subseteq U$ and $B \subseteq V$ and $U \cap V = \varphi$.
- (ii) \rightarrow (i): Let A and B be a pair of disjoint closed sets of X . The by hypothesis there exist disjoint rw-open sets U and V such that $A \subseteq U$ and $B \subseteq V$ and $U \cap V = \varphi$. Since from [2], $A \subseteq \alpha\text{-int}U$ and $B \subseteq \alpha\text{-int}V$ and $\alpha\text{-int}U \cap \alpha\text{-int}V = \varphi$. Hence X is α -normal.

Theorem 4.11. Let X be a α -normal, then the following hold good:

- (i) For each closed set A and every rw-open set B such that $A \subseteq B$ there exists a α -open set U such that $A \subseteq U \subseteq \alpha\text{-cl}(U) \subseteq B$.

(ii) For every rw-closed set A and every open set B containing A, there exist a α -open set U such that $A \subseteq U \subseteq \alpha\text{-cl}(U) \subseteq B$

V. REFERENCES

- [1] S.P. Arya and T.M. Nour, Characterization of s- normal spaces, Indian. J.Pure and Appl. Math., 21(8),(1990), 717-719.
- [2] R.S.Wali, on some topics in general and fuzzy topological spaces Ph.d thesis Karnatak university dharwad(2007)
- [3] S.S. Benchalli, T.D. Rayanagoudar and P.G. Patil, g^* - Pre Regular and g^* -Pre Normal Spaces, Int. Math. Forum 4/48(2010) 2399-2408.
- [4] S.S. Benchalli and P.G. Patil, Some New Continuous Maps in Topological Spaces, Journal of Advanced Studies in Topology 2/1-2 (2009) 53-63
- [5] R. Devi, Studies on Generalizations of Closed Maps and Homeomorpisms inTopological Spaces,Ph.D. thesis, Bharatiyar University, Coimbatore (1994).
- [6] C. Dorsett, Semi normal Spaces, Kyungpook Math. J. 25 (1985) 173-180.
- [7] S.N. Maheshwar and R. Prasad, On s-normal spaces, Bull. Math. Soc. Sci.Math. R.S. Roumanie 22 (1978) 27-28.
- [8] B.M. Munshi, Separation axioms, Acta Ciencia Indica 12 (1986) 140-146.
- [9] T. Noiri and V. Popa, On g -regular spaces and some functions, Mem. Fac. Sci.Kochi Univ. Math 20 (1999)67-74.Journal of New Results in Science 5 (2014) 96-103 103
- [10]R.S.Wali, on some topics in general and fuzzy topological spaces Ph.d thesis Karnatak university dharwad(2007)
- [11]M.S. John, A Study on Generalizations of Closed Sets and Continuous Maps inTopological and Bitopological spaces , Ph.D. Thesis, Bharathiar University, Coimbatore (2002).
- [12]R.S.Wali and Vivekananda Dembre;On Pre Generalized Pre Regular Weakly Closed Sets in Topological Spaces ;Journal of Computer and Mathematical Sciences, Vol.6(2),113-125, February 2015.