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ABSTRACT
The aim of this paper is to introduce and study two new classes of spaces, namely Rw-normal and rw- regular
spaces and obtained their properties by utilizing rw-closed sets.
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l. INTRODUCTION
Maheshwari and Prasad[8] introduced the new class of spaces called s-normal spaces using semi-open sets. It was
further studied by Noiri and Popa[10],Dorsett[6] and Arya[1]. Munshi[9], introduced g-regular and g- normal
spaces using g-closed sets of Levine[7]. Later, Benchalli et al [3] and Shik John[12] studied the concept of g* -
preregular, g* - pre normal and w- normal, w-regular spaces in topological spaces. Recently, Benchalli et al [2,11]
introduced and studied the properties of rw-closed sets and rw-continuous functions.

1. PRELIMINARIES
Throughout this paper space (X, t) and (Y, o) (or simply X and Y) always denote topological space on which no
separation axioms are assumed unless explicitly stated. For a subset A of a space X, CI(A), Int(A), A°, and a-
CI(A), denote the Closure of A, Interior of A and Compliment of A and a-closure of A in X respectively.

Definition 2.1: A subset A of a topological space (X, 1) is called
i.  W-closed set[ 12] if cl(A) < U whenever Ac U and U is semi-open in X.
ii. Generalized closed set(briefly g-closed) [7] if cl(A)cU
whenever A — U and U is open in X.

Definition 2.2 : A topological space X is said to be a
1. g-regular[10], if for each g-closed set F of X and each point x €F,there exists disjoint open sets U and V
suchthat FEU and x e V .
2. «a -regular [4], if for each « - closed set F of X and each point x & F, there exists disjoint « - open sets
U and V such that F € V and x € U.
3. we-regular[12], if for each closed set F of X and each point x & F, there exists disjoint w-open sets U and
V such that FEU and xe V.

Definition 2.3. A topological space X is said to be a
1. g- normal [10], if for any pair of disjoint g-closed sets A and B, there exists disjoint open sets U and V
such that AcU and BSV .
2. a-normal [4], if for any pair of disjoint « — closed sets A and B, there exists dis-joint « -open sets U
and V such that AU and BEV .
3. w-normal [12], if for any pair of disjoint w -closed sets A and B, there exists disjoint open sets U and V
such that A € U and BCV.

Definition 2.4: [2] A topological space X is called T - space if every rw-closed set in it is closed set.
Definition 2.5:A map f: (X, ) —» (Y, 1) is said to be

i rw-continuous map[11]if f 1(V)is a rw-closed set of (X, t) for every closed set V of (Y, ).
ii. rw-irresolute map[11]if f -1(V)is a rw-closed set of (X, t) for every rw-closed set V of (Y, ).
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1. RW -REGULAR SPACES
In this section, we introduce a new class of spaces called rw-regular spaces using Rw-closed sets and obtain some
of their characterizations.

Definition 3.1. A topological space X is said to be rw-regular if for each rw closed set F and a point x & F, there
exist disjoint open sets G and H such that FEG and x € H.
We have the following interrelationship between rw-regularity and regularity.

Theorem 3.2. Every rw-regular space is regular.

Proof: Let X be a rw-regular space. Let F be any closed set in X and a point x¢X such that x¢F. By [2], F is rw-
closed and x & F. Since X is a rw-regular space, there exists a pair of disjoint open sets G and H such that F € G
and x € H. Hence X is a regular space.

Remark 3.3. If X is a regular space and T space, then X is rw regular We have the following characterization.

Theorem 3.4. The following statements are equivalent for a topological space X

(i) X'is a rw regular space

(ii) For each x € X and each rw-open neighbourhood U of x there exists an open neighbourhood N of x such that
cl(N)cU.

Proof: (i) — (ii): Suppose X is a rw regular space. Let U be any rw neighbour-hood of x. Then there exists rw
open set G such that x e G €U. Now X —G is rw closed set and x & X - G. Since X is rw regular, there exist open
sets M and N such that X -GEM, xe Nand M NN = ¢ and so N €X-M. Now cl(N) € cl(X -M) = X -M and X
-M < M. This implies X -Mc U. Therefore cl(N)SU.

(i) »(i): Let Fbe any rw closed setin X and x € X -F and X - F is a Rw-open and so X - F is a rw-neighbourhood
of X. By hypothesis, there exists an open neighbourhood N of x such that x ¢ N and cI(N) € X - F. This implies F
c X -cl(N) is an open set containing F and N n f(X - cI(N)= ¢ . Hence X is rw- regular space.

We have another characterization of rw-regularity in the following.

Theorem 3.5: A topological space X is rw-regular if and only if for each rw-closed set F of X and each x € X - F
there exist open sets G and H of X such that x e G, FEH and cl(G) n cl(H) = @.

Proof: Suppose X is rw-regular space. Let F be a rw-closed set in X with x & F.Then there exists open sets M and
H of X such that x e M, F €H and MnH =@. This implies Mncl(H) = @.As X is rw-regular, there exist open sets
U and V such that x e U, cl(H)SV and UnV = @. so cl(U)NV = @.Let G =M n U, then G and H are open sets of
X such that xeG, F € H and cl(H) n cl(H) =@ .

Conversely, if for each rw-closed set F of X and each x € X -F there exists open sets G and H such that x € G, FS
H and cl(H) ncl(H) = @ .This implies x e G,F€Hand G N H = @. Hence X is rw- regular.

Now we prove that rw- regularity is a heriditary property.

Theorem 3.6. Every subspace of a rw-regular space is rw-regular.

Proof: Let X be a rw- regular space. Let Y be a subspace of X. Let x € Y and F be a rw-closed set in Y such that
x&F. Then there is a closed set and so rw-closed set A of X with F =Y n A and x ¢€A. Therefore we have x € X,
A'is rw — closed in X such that xgA. Since X is rw- regular, there exist open sets G and H such that x ¢ G, AcH
and GNH = ¢. Notethat Y n Gand Y n H are open setsin Y .Also X € G and x € Y, which implies x e Y NG and
AcHimpliesYNGEY NHFSY nH. Also(Y nG)n (Y n H)=¢.HenceY is rw-regular space.

We have yet another characterization of rw -regularity in the following.

Theorem 3.7 : The following statements about a topological space X are equivalent:

(i) X is rw -regular

(i) For each x € X and each rw-open set U in X such that x € U there exists an open set V in X such that x e
Vecel(V)cu.

(iii) For each point x eX and for each rw-closed set A with x & A, there exists an open set V containing x such
that cl(V)NA = ¢.
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Proof: (i) —(ii): Follows from Theorem 3.5.

(i) —»(iii): Suppose (ii) holds. Let x € X and A be an rw-closed set of X such that x € A.Then X - A is a rw-open
set with x € X -A. By hypothesis, there exists an open set V suchthatx e V ccl(V) € X-A. Thatisxe V,VC
cl(A)and cl(A) € X-A.Sox €V and cl(V)NA = ¢.

(iii) # (i): Let x € X and U be an rw-open set in X such that x e U. Then X - U is an rw closed set and x¢ X - U.
Then by hypothesis, there exists an open set V containing x such that cl(A) N(X -U) = A. Therefore x e V , cl(V
)EU so x e VE cl(V)c U.

The invariance of rw-regularity is given in the following.

Theorem 3.8: Let f: X~ Y be a bijective, rw-irresolute and open map from a rw- regular space X into a
topological space Y , then Y is rw-regular.

Proof: Lety € Y and F be a rwclosed set in Y with y & F. Since F is rw- irresolute, f - *(F) is rw-closed set in X.
Let f(x) =y so that x = f 1 (y) and x & f-1(F). Again X is rw-regular space, there exist open sets U and V such
thatx e Uand f-}(F) € G, U n V = ¢. Since f is open and bijective, we have y f(U),F < f(V ) and f(U) n f(V)
=f(UnV ) =1(¢) = ¢ . Hence Y is rw-regular space.

Theorem 3.9. Let f: X Y be a bijective, rw-closed and open map from a topological space X into a rw-regular
space Y . If X is T space, then X is rw-regular.

Proof: Let x e X and F be an rw-closed set in X with x & F. Since X is T space,F is closed in X. Then f(F) is
rwclosed set with f(x) & f(F) in Y, since fis rw- closed. As Y is rw-regular, there exist open sets U and V such
that x e U and f(x) e U and f(F) <V . Therefore x e f-}(U) and F = f-1(V ). Hence X is rw-regular space.

Theorem 3.10. If f: X —»Y is w-irresolute, continuous injection and Y is rw-regular space,then X is rw- regular.

Proof: Let F be any closed set in X with x& F. Since f is w-irresolute, fis rw- closed setin Y and f(x) € f(F). Since
Y is rw- regular,there exists open sets U and V such that f(x) e Uand f(F) €V . Thusx e f-}(U),F < f (V)
and f 1 (U) n f-1(V) = ¢. Hence X is rw- regular space.

Iv. RW-NORMAL SPACES
In this section, we introduce the concept of rwnormal spaces and study some of their characterizations.

Definition 4.1. A topological space X is said to be rw-normal if for each pair of disjoint rw- closed sets A and B
in X, there exists a pair of disjoint open sets U and V in X such that A< U and B cV
We have the following interrelationship.

Theorem 4.2. Every rw-normal space is normal.

Proof: Let X be a rw-normal space. Let A and B be a pair of disjoint closed sets in X. From [2], A and B are rw-
closed sets in X. Since X is rw-normal, there exists a pair of disjoint open sets G and H in X such that A € G and
B < H. Hence X is normal.

Remark 4.3. The converse need not be true in general as seen from the following
example.

Example 4.4. Let X =Y ={a,b,c,d},t ={X, 0,{a}{c}.{a.c}.{b,c,d}} Then
the space X is hormal but not rw - normal, since the pair of disjoint rw - closed sets namely, A = {a,d} and B =
{b,c} for which there do not exists disjoint open sets G and H such that A € G and BS H.

Remark 4.5.:If X is normal and T w-space, then X is rw-normal.
Hereditary property of rw- normality is given in the following.

Theorem 4.6. A rw - closed subspace of a rw - normal space is rw -normal. We have the following
characterization.

Theorem 4.7. The following statements for a topological space X are equivalent:
(i) X is rw- normal
(ii) For each rw - closed set A and each rw - open set U such that

ACU, there exists an open set V such that AcVccel(V)cU

https://acervojournal.org/| | Page No: 69



Acervo| | I1SSN: 2237 - 8723 Vol 06, Issue 09] | 2024

(iii) For any rw-closed sets A, B, there exists an open set V such that ASV and cl(V)NB = ¢.
(iv) For each pair A, B of disjoint rw-closed sets there exist open sets U and V such that A € U,B €V and cl(U) n
cl(V) =o.

Proof: (i) —»(ii): Let A be a rw-closed set and U be a rw-open set such that A< U.Then A and X - U are disjoint
rw-closed sets in X. Since X is rw-normal , there exists a pair of disjoint open sets V and W in X such that A € V
and X -U €W. Now X -W € X - (X -U), so X -W< U also VN W = ¢. implies V € X -W, so cl(V ) < cl(X -W)
which implies cl(V) € X -W. Therefore cl(V) € X-Wc U.Socl(V) < U.Hence A cVccl(V)cU.

(it) = (iii): Let A and B be a pair of disjoint rwclosed sets in X. Now An B = ¢,50 AC X -B, where A is rw-
closed anc d X - B is rw-open . Then by (ii) there exists an open set V such that AcVccl(V)< X - B. Now cl(V)
c X-Bimpliescl(V)n B=¢ .Thus A< Vandcl(V)NB = ¢.

(iif) — (iv): Let A and B be a pair of disjoint rw-closed sets in X.Then from (iii) there exists an open set U such
that AcU and cl(U) n B = ¢. Since cl(V) is closed, so rw-closed set. Therefore cl(V ) and B are disjoint rwclosed
sets in X. By hypothesis, there exists an open set V , such that BEV and cl(U) ncl(V ) = ¢.

(iv) —»(i): Let A and B be a pair of disjoint rw-closed sets in X.Then from (iv) there exist an open sets U and V
in X such that AcU, B€V and cl(U) ncl(V ) =¢p. So Ac U, BcV and UnV = ¢.Hence X rw-normal.

Theorem 4.8. Let X be a topological space. Then X is rw-normal if and only if for any pair A, B of disjoint rw-
closed sets there exist open sets U and V of X such that AcU,BSV and cl(U) ncl(V ) = .

Theorem 4.9. Let X be a topological space. Then the following are equivalent:

(i) X is normal

(ii) For any disjoint closed sets A and B, there exist disjoint rw - open sets U and V

such that ACU,BCV .

(iii) For any closed set A and any open set V such that AC V, there exists an rw -open set U of X such that AcUCS
acliUyc V.

Proof:

(i) —» (ii): Suppose X is normal. Since every open set is rw-open [2], (ii) follows.

(if) —» (iii): Suppose (ii) holds. Let A be a closed set and V be an open set containing A. Then Aand X - V are
disjoint closed sets. By (ii), there exist disjoint rw- open sets U and W such that AcU and X - V € W, since X -
V is closed, so rw - closed. From [2], we have X -V a-int(W) and U n a-int(W) = ¢.and so wehave a-cl(U) N
a-int(W) = ¢. Hence Ac U € a-cl(U) € X—a-int(W)SV . ThusAc U S a-cl(U) c V.

(iii) ¥ (i): Let A and B be a pair of disjoint closed sets of X.Then A € X - B and X -B is open. There exists a
rw - open set G of X suchthat A= G < a-cl(G) € X-B. Since A is closed, it is w- closed, we have A € « -
int(G). Take U = int(cl(int(a-int(G))))and V = int(cl(int(X —a-cl(G)))). Then U and V are disjoint open sets of X
suchthat Ac Uand B € V. Hence X is normal.

We have the following characterization of rw - normality and rw- normality.

Theorem 4.10: Let X be a topological space. Then the following are equivalent:

(i) X is a-normal.

(i) For any disjoint closed sets A and B, there exist disjoint rw - open sets U and V such that A< U,BSV and Un
V=g.

Proof:

(i) = (ii): Suppose X is a- normal. Let A and B be a pair of disjoint closed sets of X. Since X is a -normal,there
exist disjoint @ — open sets U and V such that AcU and B€V and U n V = ¢.

(if) —» (i):Let A and B be a pair of disjoint closed sets of X.The by hypothesis there exist disjoint rw- open sets
U and V such that AcU and B € V and U NV = ¢ .Since from [2], AS a-intU and B € a — int(V)and a —int
Un a -intV = ¢. Hence X is « -normal.

Theorem 4.11. Let X bea a- normal, then the following hold good:

(i)For each closed set A and every rw - open set B such that ACSB ther exists a a open set U such that AcUC a-
cl(U)c B.
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(ii) For every rw-closed set A and every open set B containing A, there exist a a-open set U such that ACUC a-
cl(U)cB
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