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ABSTRACT 
Today’s feature-rich multimedia products require embedded system solution with complex System-on-Chip 

(SoC) to meet market expectations of high performance at low cost and lower energy consumption. SoCs are 

complex designs with multiple embedded processors, memory subsystems, and application specific peripherals. 

The memory architecture of embedded SoCs strongly influences the area, power and performance of the entire 

system. Further, the memory subsystem constitutes a major part (typically up to 70%) of the silicon area for the 

current day SoC. 

The on-chip memory organization of embedded processors varies widely from one SoC to another, depending 

on the application and market segment for which the SoC is deployed. There is a wide variety of choices 

available for the embedded designers, starting from simple on-chip SPRAM based architecture to more complex 

cache-SPRAM based hybrid architecture. The performance of a memory architecture also depends on how the 

data variables of the application are placed in the memory. There are multiple data layouts for each memory 

architecture that are efficient from a power and performance viewpoint. Further, the designer would be 

interested in multiple optimal design points to address various market segments. Hence a memory architecture 

exploration for an embedded system involves evaluating a large design space in the order of 100,000 of design 

points and each design points having several tens of thousands of data layouts. Due to its large impact on system 

performance parameters, the memory architecture is often hand-crafted by experienced designers exploring a 

very small subset of this design space. The vast memory design space prohibits any possibility for a manual 

analysis. 

In this work, we propose an automated framework for on-chip memory architecture exploration. Our proposed 

framework integrates memory architecture exploration and data layout to search the design space efficiently. 

While the memory exploration selects specific memory architectures, the data layout efficiently maps the given 

application on  to the memory architecture under consideration and thus helps in evaluating the memory 

architecture. The proposed memory exploration framework works at both logical and physical memory 

architecture level. Our work addresses on-chip memory architecture for DSP processors that is organized as 

multiple memory banks, with each back can be a single/dual port banks and with non-uniform bank sizes. 

Further, our work also address memory architecture exploration for on-chip memory architectures that is 

SPRAM and cache based. Our proposed method is based on multi-objective Genetic Algorithm based and 

outputs several hundred Pareto-optimal design solutions that are interesting from a area, power and performance 

viewpoints within a few hours of running on a standard desktop configuration. 
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I. INTRODUCTION 

Today’s Embedded Systems and VLSI technology allows us to integrate tens of processor cores on the 

same chip along with embedded memories, application specific circuits, and interconnect infrastruc- 

ture. As a result, it is possible to integrate an entire system onto a single chip. The single chip phone, 

which has been introduced by several semiconductor vendors, is an example of such a system-on-chip; 

it includes the modem, radio transceiver, power management func- tionality, a multimedia engine and 

security features, all on the same chip. An embedded system is an application-specific system which 

is optimized to perform a single function or a small set of functions [70]. We distinguish this from a 

general-purpose system, which is software-programmable to perform multiple functions. A personal 

computer is an ex- ample of a general-purpose system; depending on the software we  run on the 

computer,  it can be useful for playing games, word processing, database operations, scientific com- 

putation, etc. On the other hand, a digital camera is an example of an embedded system, which can 

perform a limited set of functions such as taking pictures, organizing them, or transferring them to 

another device through a suitable I/O interface. Other examples of embedded systems include mobile 
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phones, audio/video players, videogame consoles, set- top boxes, car infotainment systems, personal 

digital assistants, telephone central-office switches, dedicated network routers and bridges. Note 

that a large number of embedded 

 

systems are built for the consumer market. As a result, in order to be competetive, the cost of an 

embedded system cannot be very high. Yet, the consumers demand higher per- formance and more 

features from the embedded systems products. It is easy to appreciate this point if we compare the 

performance and feature set offered by mobile phones that cost Rs 5000/-(or 100$) today and which 

cost the same a few years ago. We also see that a large number of embedded systems are being built 

for the mobile market.  This trend   is not surprising - the number of mobile phone subscribers 

increased from 500 Million in year 2000 to 2.6 Billion in 2007 [7]. Because of such high volumes, 

embedded systems are extremely cost sensitive and their design demands careful silicon-area 

optimization. Since mobile devices use batteries as the main source of power, embedded systems must 

also be optimized for energy dissipation. Power, which represents the rate at which energy is con- 

sumed, must also be kept low to avoid heating and improving reliability. In summary, the designer of 

an embedded system must simultaneously consider and optimize price, perfor- mance, energy, and 

power dissipation. Application specific embedded systems designed today demand innovative 

methods to optimize these system cost functions 

 

Memory Subsystem 

 

On-chip Memory Organization 

The memory architecture of an embedded processor core is complex and is custom de- signed to 

improve run-time performance and power consumption. In this section we describe only on the 

memory architecture of the DSP processor as this is the focus of   the thesis. This is because, the 

memory architecture of the DSP is more  complex  than that of microcontrollers (MCU) due to the 

following reasons: (a) DSP applications are more data dominated than the control-dominated software 

executed on an MCU. Mem- ory bandwidth requirements for DSP applications range from 2 to 3 

memory accesses per. 
 

 
Figure 1.1: Architecture of an Embedded SoC 

processor clock cycle. For an MCU, this figure is, at best, one memory access per cycle. 

(b) It is critical in DSP application to extract maximum performance from the memory subsystem in order to 

meet the real-time constraints of the embedded application. As a consequence, the DSP software for critical 

kernels is developed mostly as hand optimized assembly code. In contrast, the software for MCU is typically 

developed in high-level languages. The memory architecture for a DSP is unique since the DSP has multiple on- 

chip buses and multiple address generation units to service higher bandwidth needs. The on-chip memory of 

embedded processors can include (a) only Level-1 cache (L1-cache) (e.g., [1]), (b) only scratch-pad RAM 

(SPRAM) (e.g., [75, 76], or (c) a combination of L1-cache and SPRAM 

 

Data Layout 

To efficiently use the on-chip memory, critical data variables of the application need to be identified and 

mapped to the on-chip RAM. The memory architecture may contain both on-chip cache and SPRAM. In such a 

case it is important to partition the data section and assign them appropriately to on-chip cache and SPRAM 
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such that memory performance of the application is optimized. Further, among the data sections assigned to on-

chip cache and SPRAM, a proper placement of the data sections on the cache and SPRAM is required to ensure 

that the cache misses are reduced and the multiple memory banks of the SPRAM and the dual ported SPRAMs 

are efficiently utilized. Identifying such a data placement for data sections, referred to as the data layout 

problem, is complex and critical step [10, 53]. This task is typically performed manually as the compiler cannot 

assume that the code under compilation represents the entire system. 

 

Memory Architecture Exploration 

In modern embedded systems, the area and power consumed by the memory subsystem is up to 10 times that of 

the data path, making memory a critical component of the design [11].  Further,  the memory subsystem 

constitutes a large part (typically up to 70%) of  the silicon area for the current day SoC and it is expected to go 

up to 94% in 2014 as shown in  the Figure 1.3 [6].   The  main reason for this is that embedded  memory has   a 

relatively smallsubsystem per-area design cost in terms of both man-power, time-to- market and power 

consumption [60]. Hence the memory plays an important role in the design of embedded SoCs. Further the 

memory architecture strongly influences the cost, performance and power dissipation of an embedded SoC. 

 

As discussed earlier, the on-chip memory organization of embedded processors varies widely from one SoC to 

another, depending on the application and market segment for which the SoC is deployed. There is a wide 

variety of choices available for the embed- ded designers, starting from simple on-chip SPRAM based 

architecture to more complex cache-SPRAM based hybrid architecture. To begin with, the system designer 

needs to decide if the SoC requires cache and what is the right size of on-chip RAM. Once the high level 

memory organization is decided, the finer parameters need to be defined to complete the memory architecture 

definition. For the on-chip SPRAM based architecture, the pa- rameters, namely, size, latency, number of 

memory banks, number of read/write ports per memory bank and connectivity, collectively define the memory 

organization and strongly influence the performance, cost, and power consumption. For cache based on-chip 

RAM 

 

 
Figure 1.3: Memory Trends in SoC 

 

the finer parameters are the size of cache, associativity, line size, miss latency and write policy. Due to its large 

impact on system performance parameters, the memory architec- ture is often hand-crafted by the designer 

based on the targeted applications. However, with the combination of on-chip SPRAM and cache, the memory 

design space is too large for a manual analysis [31]. Also, with the projected growth in the complexity of 

embed- ded systems and the vast design space in memory architecture, hand optimization of the memory 

architecture will soon become impossible. This warrants an automated frame- work which can explore the 

memory architecture design space and identify interesting design points that are optimal from a performance, 

power consumption and VLSI area (and hence cost) perspective. As the memory architecture design space itself 

is vast, a brute force design space exploration tool may take large computation time and hence is unlikely to be 

useful in meeting the tight time-to-market constraint. Further, for each given memory architecture, there are 

several possible data section layouts which are opti- mal in terms of performance and power. This further 

compounds the memory architecture exploration problem. 
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II. ON-CHIP MEMORY ARCHITECTURE OF EMBEDDED PROCESSORSDSP  
 

On-chip SPRAM Architecture 

DSP processor based embedded systems have an on-chip memory which typically has a single cycle access 

time [49]. The on-chip memory, also referred to as scratch pad memory, is mapped into an address space 

disjoint from the off-chip memory but connected to the same address and data buses. 1Typically the 

scratch-pad memory is organized into multiple memory banks to facilitate multiple simultaneous data 

accesses. DSP Processors typically have 2 or more address generation units and multiple on-chip 

buses to facilitate multiple memory accesses. 

 

 
Figure 2.1: Example DSP Memory Map 

 

Further, each on-chip memory bank can be organized either as a single-access RAM (SARAM) or as a 

dual-access RAM (DARAM), to provide single or dual accesses to   the same memory bank in a 

single cycle. For example, Texas Instruments TMS320C54X digital signal processor has two data read 

buses and one data write bus [75]. and, Texas In- struments TMS320C55X processor has three data 

read busses and two data write busses, since concurrent access to the same array are common in DSP 

applications [76]. Fig-  ure 2.1 presents memory map of C55X DSPs, where multiple memory banks 

of SARAM and DARAM memory banks form a part of memory map, and MMR represents mem- 

ory mapped registers which typically contain control registers, status registers and stack pointers. The 
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DARAM and SARAM regions can be recognized using multiple memory bank to enable two 

concurrent accesses 
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