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Abstract

Fluoride is one of the common contaminants present in groundwater and in waterbodies in
general. It can create serious health hazards if ingested more (>1.5 mg/L). Scientists
understands that removing fluoride from ground water is a difficult task. Several techniques
like coagulation, membrane filtration, etc. are available for treatment but because of the high
processing costs, such technologies are not always suitable for developing countries. As a
result, environmentally friendly and low-cost technology like adsorption is one such method
that can be successfully employed for fluoride removal. Fluoride was removed using a variety
of low-cost adsorbents such as tamarind seed, tamarind gel, and duck weed etc. by
defluoridation using adsorption and can be considered as one of the efficient and practical
technique. This review article reports for the successful and efficient use adsorption and
various adsorbents for the defluoridation of contaminated water. Observations have been
reported for batch studies done by several researchers for effect of various parameter like
initial concentration, temperature, contact time, pH, stirring rate on defluoridation from
aqueous solution which can be supported from the fact that most of the researches done
follows Pseudo second order kinetic model which suggests that the rate of adsorption is

substantial and adsorption is an effective tool for the removal of fluoride from contaminated
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water. Isotherm studies reveal that most of the adsorption follows either Langmuir or
Freundlich models. Overall, the research analyses suggests that adsorption technique can be

regarded as one of the important techniques for defluoridation of contaminated waters.

Keywords
Adsorption, Defluoridation, Adsorption equilibrium, Activation Energy, Adsorption kinetics,
Point of zero charge (pHpzc)

1. Introduction

Fluorine (F2) is a corrosive, pale yellow-green gas that is almost impossible to find in
elemental form in the natural environment due to its high electronegativity and reactivity.
Fluoride (F) is a fluorine anion with a small radius, a high proclivity for acting as a ligand,
and the ability to produce a wide range of organic and inorganic compounds in soil, rocks,
air, plants, and animals.Fluoride is present in surface and groundwater as a nearly totally
dissociated fluoride ion [1,2]. Fluoride is the 13th most abundant naturally occurring element
which is reactive and electronegative. Althoughfluoride concentration in surface water and
groundwaterdepends on various contributing factors, including as total dissolved solid, pH,
hardness, alkalinity and the geological makeup of aquifers [I, 3-8] high fluoride
concentrations are a result of fluorine tainted waste water discharges in many nations across
the world. The superphosphate fertiliser business is frequently the source of such waste

streams [9,10] coal fired power station [11], oil refineries[12] etc.

FRRDF report found that a total of 17 out of 32 States in India are reported to have endemic
fluorosis in India [13],from which 70-100% affected state are Rajasthan, Gujarat and Andhra
Pradesh. 40-70% affected state are Maharashtra, Madhya Pradesh, Assam, Jharkhand, Bihar,
Uttar Pradesh, Karnataka, Chhattisgarh, Haryana, Delhi, Punjab, Uttaranchal, TamilNadu. 1-
40% Jammu & Kashmir, West Bengal, Orissa, Kerala. In 1987 it is estimated that 25 million

people were suffering from fluorosis.

Fluoride is beneficial to human body for the classification of dental enamel and maintenance
of healthy bones. Intake of fluoride in body is through drinking water, food products. As per
WHO, the maximum permissible limit for fluoride in drinking water is 1.5 mg/I [1,14], but a
lower concentration is recommended for children and as per BIS 10500 (2012), the maximum
permissible limit of fluoride in drinking water is 1.5 mg/I[15], but if the consumption of

fluoride exceeds above permissible limit for a long period of time it can cause dental
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fluorosis, cancer, skeletal fluorosis and non-skeleton fluorosis change in the DNA-structure.
People exposed to large amount of fluoride (>1.5 mg/l) show dental skeletal fluorosis [16-
23]. Dental fluorosis affects children and discolours and disfigures teeth. Skeletal fluorosis
affects the bones and major joint of the body like neck, backbone, shoulder, hip and knee
joints resulting in severe pain, rigidity or stiffness in joints. Severe forms of skeletal fluorosis
results in marked disability. Non-skeletal forms of fluorosis are earlier manifestations, which
develop long before onset of typical change in teeth and skeletal bones. These are seen as
gastro-intestinal symptoms and may overlap with other diseases leading to misdiagnosis. It

affects men, women and children of all age group.

2. Materials and Methods

2.1 Fluoride and its adsorption chemistry

Fluoride is an inorganic, monatomic fluorine anion with the chemical formula F, whose salts
are typically white or colourless. Fluoride salts are usually colourless and have a
characteristic bitter flavour. Its salts and minerals are essential chemical reagents and
industrial chemicals, mostly used to make hydrogen fluoride for fluorocarbons.Although
fluorine is categorised as a weak base because it only interacts partially in solution, pure
fluoride is corrosive and can cause skin irritation. The simplest fluorine anion is fluoride. The
fluoride ion is similar to the hydroxide ion in charge and size. Fluoride ions are found in
various minerals on Earth, including fluorite, but in nature only in trace amounts in water

bodies.

Removal of fluoride using cellulosic based adsorbents [8, 24] are in wide practice and hence
its important to understand the chemistry of fluoride adsorption by an adsorbent consisting

cellulosic material.

Cellulosic adsorbents mainly consist of cellulose, hemicellulose and lignin components with
functional groups primarily responsible for uptake of adsorbate from an aqueous solution are
hydroxyl and carboxyl groups [25-42]with symbols OH, COOH, NH-O and C=0. Also, there
are hetero atoms i.e., O and H, which undergo protonation and they release a lone pair of
electrons. These lone pair electrons develop a positive charge and they participate in the

adsorption of fluoride. Reactions involved during adsorption can be summarized as:
S—OH + H"— S —OH;" (+F electrostatic attraction) (1)

S—=C=0+H"— S—-C=OH" (Protonation) )
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S—HN + H"— S — HoN" (+F electrostatic attraction) 3)

After that electrostatic physisorption between ions and dipoles will take place and
subsequently electrostatic attraction between positive poles of partial bonds of OH, NH and

CO groups of adsorbents and fluoride will occur as:
SOS-H®+F—->S-0 4)
~HS-.....F>S-NS5-HS ©)

For adsorption by soil minerals, adsorbents in soils, such as calcareous minerals, aid in pH-

dependent fluoride solubility, as shown by the mass balance equation:
CaCOs + H' (aq) 2F ~(aq) «»CaFx(s) + HCO;3™ (aq) (6)

The above equation corelates fluoride and calcite when both salts come into contact with
water in natural soil condition. As a result, rising pH and HCO3 ™ concentrations raise water
fluoride levels, and vice versa. Furthermore, anionic adsorption onto soil adsorbents can be
done in two ways: specific and non-specific. The former is based on ligand-exchange
processes, in which anions remove OH and H>O from soil surfaces. The latter is based on the
pH of zero net charge (pHz.) of the adsorbent soil surface and involves electrostatic
coulombic forces. The soil surface becomes positively charged above pHzpe, but below net
positive surface charge persists.For example, ligand exchange happens in the selective
adsorption of fluoride by metal oxyhydroxide surface sites, according to equation 7 and 8 as

follows for protonated and non-protonated sites:
SOH," +F~ <> SF + H,0 )
SOH +F < SF~+ H,0 ®)

As a result, the pH of the aqueous media is the primary determinant of fluoride uptake by soil
surfaces.Importance of pHzpc in relation to adsorption is also discussed later in section 3.2 of
this article.

According to many studies,bagasse fly ash (BF) has a high carbon content, according to [43]
agro cum industrial waste bagasse dust, which contains functional groups associated with
sucrose, lignin, cellulose, and proteins as key ingredients.Anion adsorption on such materials
is attributable to the presence of aquo groups (—M—OH>—) and hydroxo groups (—M—
OH), as well as the large surface area and charge on their tiny particles.Deprotonation or a
hydroxyl ion association reaction determine the surface chemistry of an oxide in contact with

an aqueous solution to a great extent [44]. However, some evidence suggests that even if the
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surface is neutral, an anion like F~ can be adsorbed by an ion exchange mechanism as shown

below.
—M—OH+F — > M—F+O0OH

Defluoridation methods may broadly be classified in two categories namely Additive
methods and Adsorptive methods. In additive methods, certain reagents are added and
optimum conditions for the defluoridation are maintained. Fluoride ion present in water
reacts with the reagents added and forms an insoluble complex and is being removed as ad
flocs. In adsorptive methods, a bed of greater surface activity is chosen and water is passed
through the bed. Due to surface activity, fluoride ions get preferentially adsorbed on the bed
surface thereby causing a reduction of fluoride ion in the exit stream. To remove fluoride
from water, a variety of technologies are currently available, as shown in Table 1, including
coagulation and precipitation [12, 45-49], membrane procedures [50-58], electrochemical
treatments [59-69], and ion-exchange and its modification [70-76]. However, the adsorption
process is often regarded as the most cost-effective and efficient approach for removing
fluoride from water [8, 24, 25, 26, 77-80].Advantages and disadvantages of different
defluoridation techniques are highlighted in Table 1.

Table 1. Comparison of different defluoridation techniques in use [8, 25, 46, 58, 61, 81, 82]

Processes Technology Advantages Disadvantages
Coagulation Simple, High sludge production,
Flocculation economically handling and disposal
feasible problems
Economically Slow process, necessary to
Biodegradation attractive, create an optimal favourable
Conventional publicly acceptable environment, maintenance
treatment treatment and nutrition requirements
processes Adsorptionon | The most effective Ineffective against disperse
activated adsorbent, great, and vat dyes, the
carbons capacity, produce a regeneration is expensive
high-quality treated and results in loss of the
effluent adsorbent, non-destructive
process
Membrane Removes all dye High pressures, expensive,
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Separations types, incapable of treating large volumes
produce a high-
quality treated
Established effluent
Recovery Ion-exchange No loss of sorbent Economic constraints, not
processes on effective for disperse dyes
regeneration,
effective
Oxidation Rapid and efficient High energy cost, chemicals
Process required
Advanced No sludge Economically unfeasible,
oxidation production, formation of by-products,
process little or no technical constraints
consumption
of chemicals,
efficiency
Emerging for recalcitrant dyes
removal Economically Requires chemical
processes Selective attractive, modification, non-destructive

bio-sorbents

regeneration is not
necessary, high

selectivity

process

Biomass

Low operating cost,

good efficiency and

selectivity, no toxic
effect on

microorganisms

Slow process, performance
depends on some external

factors (pH, salts)

2.2 Adsorption process

Any removal of pollutants using adsorption is primarily achieved by determining the

adsorption capacity of adsorbents for the removal of adsorbates. This is conventionally done

by using mass balance equation which is given as:

7 _,,

max
m

©)

Where, ¢,7.,= Maximum adsorption capacity of adsorbent (mg/g); £~Initial fluoride
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concentration (mg/L); Cy= Finalfluoride concentration in the solution (mg/L); V =

Solutionvolume (L); m=massofadsorbent (g)

The following equation was used to calculate the percent (%) dye removal:

Removal percentage (%) = fliff x 100

Where, (7 is equilibrium concentration of dye in the solution.

For defluoridation, adsorption is a commonly employed method.Several researches involved
various materials as adsorbent for defluoridation, such as use of alumina in activated form
[83-86], bauxite [33, 34, 85, 87-96], brick powder [94], activated carbons [27-32], hematite
[91, 97-99], use of resins from polymers [74, 92, 93, 100], pumice stone [95, 101, 102], use
of charcoal, serpentine, brick, red soil, fly ash [96, 103, 104], granular ceramics [105], extract
of seeds from Moringaoleifera [33], use of chitin, chitosan, alginate [91, 106-112], rice husk
in activated form [29, 33-35], treated hydroxide/ferric oxide [113-119], HAP
(hydroxyapatite) [35, 100, 120-122], cerium and zirconium treated materials [123-134],
sorbents derived from titanium [135-137], use of schwertmannite [138], cellulosic substances
in modified form [36, 37], different form of clays [139-143], zeolite [81, 144-150] and
magnesium treated adsorbent [121, 134, 151]. Studies revealed that among different metal
oxides and hydroxides, especially those synthesised in nano-form, provide the greatest results

and better adsorption capabilities among all of the above-mentioned adsorbents.

However, as fluoride concentrations fall, many adsorbents lose their fluoride removal
capacity; the lowest limit for fluoride reduction by most adsorbents is 2 mg/L; as a result,
they are not suitable for drinking water, especially since some of them can only work at
extreme pH values, such as activated carbon, which is only effective for fluoride removal at

pH< 3.0 [152].

The process of solute molecules attaching to the surface of an adsorbent is known as
adsorption. The adsorption process can be done in a batch or in a column. Physical adsorption
(physisorption) and chemical adsorption (chemisorption) are the two main processes involved
in adsorption. Physical adsorption is caused by weak forces of attraction (van der Waals),
whereas chemisorption is caused by the development of a strong bond between the solute and

the adsorbent, resulting in electron transfer [153-156]. Researchers now a days has focused
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on various type of inexpensive and effective adsorption media. Apart from the use for
defluoridation, adsorption is also widely used for removal of harmful synthetic dyes and
heavy metals from aqueous solution [153-156]. For defluoridation using adsorption
technique, important batch studies include analysis of effect of various parameters like pH,
adsorbent dose, contact time, initial concentration, temperature, effect of RPM etc. To
understand adsorption mechanism, studies required are analysis of adsorption kinetics,
adsorption isotherm equilibrium studies, study of activation energy and thermodynamic

parameters.

2.2.1 Adsorption isotherm studies

Adsorption isotherms are useful in explaining the distribution of adsorbate molecules
between the liquid and solid phases when an adsorption process is at equilibrium [157].
Quantity of adsorbate adsorbed on the surface of an active adsorbent and the representation of
equilibrium concentration for liquid adsorbate achieved during the adsorption process at
constant temperature is scientifically presented by adsorption isotherm models. For any
pollutant removal using adsorption, isotherm equilibrium studies are as important as kinetic
studies if not more. Isotherm studies are used to quantitatively describe adsorbate-adsorbent
interactions and to investigate the absorbent's efficacy for a specific adsorbate. Some of the
renowned isotherms which are in use by various researchers for defluoridation using

adsorption are discussed as below:

Langmuir isotherm:

The Langmuir isotherm [160]is based on the premise that there is a point of valence on the
adsorbent's surface and that each adsorption site may adsorb one molecule. The adsorbed
layer will be one molecule thick as a result. In addition, it is considered that all of the
adsorption surface for molecules of the adsorbate is homogeneous, monolayer adsorption and
that the presence of adsorbed molecules at one site has no effect on the adsorption of
molecules at nearby sites. The Langmuir equation is conventionally represented like:

=" (12)

1+ﬁ£‘g

de = quantity adsorbed (mg/g), Ce = adsorbate concentration at equilibrium in mg/l, and Qm

and b = Langmuir isotherm constants linked to adsorption capacity and energy, respectively.

Rearranging equation 3 provide the linearized form of Langmuir model as-
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Je gm éq”z&:

This equation is in the form of straight-line y = mx + ¢, Where

Y ="', x =1 m = slope of the straight line =_.__ ¢ = intercept = __
Ce

—
Qe Qmb Qm

In order to determine whether the adsorption system is favourable or not _Rr‘ name as
dimensionless separation factor, which is obtained from Langmuir model is defined by the

following equation:

1
R =———
b +bey)

Where, the starting fluoride concentration is Co, and the Langmuir constant is b. The value of

Ry is used to explain the reactions' feasibility.

If Ri> 1 then the adsorption is unfavourable

If RL =1 then it is linear

If 0 <Ry > 1 then the adsorption process is favourable
If R = 0 indicate process is irreversible

Freundlich isotherm:

Freundlich [161] presumed the heterogeneity of the surface of adsorbent where there is
exponential distribution of adsorption site at the surface of the adsorbent and also the
exponential variation of the energy of adsorption. On this presumption he proposed the

isotherm model. It is empirical and very widely used. It is expressed as-

1/72
ge=Krx C , (13)

Where 1/n and KFr are system specific constants or Freundlich constants.

KF is an indicator of adsorption capacity. Higher value of Kr indicates the higher adsorption
capacity of adsorbent. The adsorption intensity is measured by the number n. The better the
adsorption, the higher the n value. 2< n < 10 value of n shows that adsorption is feasible and

favourable

The linearised Freundlich adsorption isotherm can be expressed as,
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Inge=(1/n) In Ce+ In Kr

This equation is in the form of straight-line Y = mx + C, where

Y =In ge, X = In Ce, m = slope of the straight line = 1/n, C = intercept = In Kr
Temkin Isotherm:

The Temkin isotherm model [162] implies that all molecules' adsorption heat reduces linearly
as the adsorbent surface is covered more, and that adsorption is characterised by a uniform
distribution of binding energies up to a maximum binding energy. The Temkin isotherm is

represented as follows:
C]e:BTanT+BTln Ce (14)

Where,BrisTemkinconstant and Ktis Temkin adsorptionpotential

D-Risotherm:

Dubinin Radushkevich (D-R) model [163] is a more general model in which assumption is
not based on homogenous surface or constant adsorption potential, it gives insight into the
biomass porosity as well as the adsorption energy. The value of adsorption energy further
provides information as to whether adsorption process is physical or chemical in
nature.According to the Dubinin-Radushkevich (D-R) isotherm model, adsorbent size is
equivalent to micropore size, and the adsorption equilibrium relation for a particular
adsorbate-adsorbent combination may be represented independently of temperature using the

adsorption potential (¢). The D-R isotherm can be represented as follows:

Inge=Ings—p &* (15)
Where,qs denotes theoretical isotherm saturation capacity (mg/g)
fp=Dubinin—Radushkevichisothermconstant

e=RTIn (1+1/C.)

2.2.2 Adsorption Kinetics studies

Kinetic studies are an inseparable part of any adsorption analysis. Any adsorption
experimentation is essentially incomplete if it doesn‘t include analysis of kinetics. Kinetics

models can be used to determine the likely dye adsorption mechanism as well as possible
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rate-controlling steps[157]. Adsorption kinetics is defined as the rate of retention or release of
a solute from an aqueous environment to the solid-phase interface at a particular temperature,
pH, flow rate and adsorbent dose. Kinetics studies are of great significance to evaluate the
adsorption  performance and reveal the underlying mechanisms. Adsorption
kinetics hasprime importance indescribing solute uptake rate and time required
for adsorption process. Two types of kinetic study are generally done namely, Pseudo first
order kinetic[158] and Pseudo second order kinetic[159]. For any adsorption removal of
hazardous material, if the analysis reveals that sorption is following Pseudo first order, then it
is understood that rate of sorption is less andthus will require more time for adsorption
equilibrium to reach whereas if the sorption follows Pseudo second order kinetic then it
implies that rate of sorption is more and will require lesser time compared to the former one

which is more desirable. Two rate kinetics are discussed as below:

Pseudo-first order kinetic

Pseudo-first order [158] Kinetic equation is given by:
dq . a

A Kpa (qe q)

(10)

where q is the amount of adsorbed adsorbate onto the adsorbent at time t in mg/g, qe is the
adsorption capacity at equilibrium in mg/g, and the sorption rate constant in represented by ki

in minutes.

Putting a= 1 and equating

After integration we get

In(qe — @) = —kp1 Xt+1Inge

This is in the pseudo first order rate equation in the form of straight line

Y= mx + ¢ where, y=In(qe — q); x=t; m= - kp1 and the intercept ¢ = Inq. here k,1 = Pseudo
first order rate constant and qe and q are the amounts of fluoride adsorbed (mg/g) at

equilibrium and at time t respectively.

Pseudo-second order Kinetic

Ho and McKay [159] presented the Pseudo-second order kinetic as-
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% = Kpa(qe - q)a
(11

Putting a= 2 and equating

After integration we get

t 1 t
+__

9 Kpxqe e
This is in the pseudo second order rate equation in the form of straight line

q (mg/g) is the amount adsorbed at time t (min) and qe is the amount adsorbed at equilibrium

(mg/g). Ky»is the rate constant.

2.2.3 Activation energy and Thermodynamic parameters

The lowest amount of energy required in chemistry to activate atoms or molecules in a
condition that allows them to undertake chemical transfer or physical transport is known as
activation energy. To begin, all chemical reactions, including exothermic reactions, require
activation energy.Although the energy changes caused by a reaction can be positive,
negative, or even zero, an energy barrier must be overcome in both cases before the reaction
can take place. Reactants need activation energy to move together, overcome repulsion
forces, and begin breaking bonds. The adsorption process with negative activation energy is
exothermic, meaning it increases at lower temperatures and decreases at higher temperatures.
The adsorbate may desorb (leave the surface) when the temperature rises, because
unfavourable intermolecular interactions between the adsorbate and the solvent are
significantly stronger than those between the adsorbate and the adsorbent.The Arrhenius
equation[164] can be used to calculate the activation energy of any chemical interaction. The

following is the equation for the same.

hk=mnd-~£ (16)
AT

After producing a graph of In K versus 1/T, the slope of the curve may be used to calculate
the activation energy E.. Where T is the temperature in kelvin, and K is either a pseudo first
order rate constant or a pseudo second order rate constant, depending on the kinetic reaction's

preferred rate of adsorption. The type (physical or chemical) of adsorption is revealed by
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activation energy. Thermodynamic parameters such as AG°® = Gibbs free energy change, AH®
= Enthalpy change, and AS° = Entropy change must be investigated to determine the
temperature suitability of the adsorption, whether the sorption process is endothermic or
exothermic, and whether the adsorption is enthalpy or entropy driven. The following

equations can be used to conduct the studies.

AG°=—RTInK4g (17)

Q-G
Ko (18)
AG°=AH° — TAS® (19)

The plot of AG° and T can be used to calculate the values of AH° and AS°. The initial and
equilibrium dye concentrations of the solution are C, and Ce, respectively. At equilibrium,
Kaqis the rate constant of the adsorption process. Rate kinetic analysis can be used to

determine the value of n by determining which rate model best matches the observed data.

3. Results and Discussions

3.1 Characterization of adsorbents

Apart from batch studies, characterization using SEM [165, 166, 167, 170, 171, 179] images
for adsorbents before and after adsorption, scientifically explains about the change in surface
morphology and FTIR [165, 166, 167, 170, 172-179, 181] studies reveals about functional
groups responsible for defluoridation. Various functional groups which are prominent in
modified adsorbents and are responsible for uptake of pollutants like fluoride are shown
intable 2. Other Characterization studies involves EDS [167-170] BET [179], EDX
[179],TEM, XRD [180], analysis. Singh et. al., 2016 used sugarcane bagasse for the removal
of fluoride form aqueous solution, in their analysis they used FTIR study to explain the

adsorption phenomenon. Figure 1. Shows their FTIR image.
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Table 2: Functional groups and their characteristic absorption frequencies

Functional Group

Characteristic Absorption(s) (cm™)

Alkyl C-H Stretch

2950 - 2850 (m or s)

Alkenyl C-H Stretch
Alkenyl C=C Stretch

3100 - 3010 (m)
1680 - 1620 (v)

Alkynyl C-H Stretch
Alkynyl C=C Stretch

~3300 (s)
2260 - 2100 (v)

Aromatic C-H Stretch
Aromatic C-H Bending
Aromatic C=C Bending

~3030 (v)
860 - 680 (s)
1700 - 1500 (mm)

Alcohol/Phenol O-H
Stretch

3550 - 3200 (broad, s)

Carboxylic Acid O-H
Stretch

3000 - 2500 (broad, v)

Amine N-H Stretch

3500 - 3300 (m)

Nitrile C=N Stretch

2260 - 2220 (m)

Aldehyde C=0 Stretch
Ketone C=0 Stretch
Ester C=0 Stretch
Carboxylic Acid C=0
Stretch
Amide C=0 Stretch

1740 - 1690 (s)
1750 - 1680 (s)
1750 - 1735 (s)
1780 - 1710 (s)
1690 - 1630 (s)

Amide N-H Stretch

3700 - 3500 (m)
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Fig. 1FTIR of virgin and Fluoride loaded sugarcane bagasse [166]

The presence of free and intermolecularly bound hydroxyl groups can be detected in Fig. 1
with an adsorption peak around 3,404.4 cm !. The stretching vibration of C-H groups is
responsible for the peaks detected at 2,912.5 cm '.Peaks about 1,620 cm™' correspond to
C=C, which could be attributable to lignin aromatic groups. The OCH3 group is responsible
for the strong C-O bond at 1,053.1 cm !, confirming the presence of lignin structures in

bagasse.Similar type of results for defluoridation utilising adsorption was reported [182-185]

3.2 Point of zero charge(pHp.)

The pH at which an adsorbent surface has a net neutral charge is known as the point of zero
charge (pHpzc). Study of pHy.c for any adsorbent is of much significance which reveals the
potentiality of anyadsorbent surface to attract anionic or cationic adsorbates. For e.g.,if a
given adsorbent surface have a positivecharge at the solution with pH less than pHp.cthen that
adsorbent surface will uptake adsorbates which are anionic. On the other hand, if that adsorbent
surfacehaveanegativechargeatthesolutionwith pHgreaterthanpHp,cthen the adsorbent will
uptake cationic adsorbate[186-188].In other words, the significant factor, the point of zero
charge (pHpzc), indicates the surface's adsorption ability and the sort of surface-active centres
[189]. The point of zero charge (pzc) is the pH at which the surface charge is zero and is
commonly used to quantify or characterise the electrokinetic properties of a surface. Only in

systems where H'/OH are the potential determining ions is the pH value utilised to explain
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pzc. To better understand the adsorption mechanism, many researchers analyzed the point of
zero charge (pHp.c) of various adsorbents made from agricultural solid wastes. At pH>pHyc,
cationic dye adsorption is favoured due to the presence of functional groups such as the
OH group, whereas anionic dye adsorption is favoured at pH<pHp., where the surface
becomes positively charged [189].The above concept can be applied in any adsorption
interaction to reveal whether the adsorption favours anionic or cationic sorption depending
upon the charge present on the adsorbent surface and pH of the interactive solution. [167] in
their analysis evaluated the point of zero charge forprotonated xanthate modified Ficus

religiosa (PXFR) andprotonated Ficus religiosa (PFR) which are depicted using figure 2.
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Fig. 2. Point of zero charge pH (pHpc) for (a) Protonated xanthate modified Ficus religiosa
(PXFR) and (b) protonated Ficus religiosa (PFR) [167]

As per their definition [167], a chargeless point,the pH of the solution at which the surface
charge of biomass becomes neutral is called point of zero charge (pHpzc). As the pH of the
solution rises over pHpzc, the surface of the bio-sorbent becomes negative. The surface, on
the other hand, accumulates positive charge and attracts an anion (fluoride) when the pH of
the solution falls below pHpzc [190]. As per their analysis (refer figure 2), the pHpzc values
of both bio-sorbents (PFR, PXFR) were determined to be 7.1 and 6.9, respectively. The
significantly more acidic character of sulphur being connected as a modifier could explain the

small reduction in pHpzc of xanthate modified material.
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3.3 Review for use of different adsorbents and batch study results

In general, there are two types of adsorbents, namely organic and inorganic. Organic
adsorbents like activated carbon prepared from sugarcane, coconut shell, tamarind fruit cover,
date palm, neem leaf, rice husk etc, and inorganic materials like activated alumina,
immobilised activated alumina, Mukondeni clay soils etc. Different adsorbents (organic &
inorganic) used by different researchers to study the removal of fluoride from the aqueous

solution and results of batch studies are reported below.

[191] Prepared a mixed Mukondeni clay soils (MMCS) as a cheap adsorbent for the removal
of fluoridefrom aqueous solution where they found that the optimum condition for the
removal of fluoride using MMCS are 60 min, 1.5 g, 9 mg/L, at pH of 2 and a temperature of
25°C. Freundlich isotherm fitted well for the adsorption with regression parameter (R? =
0.95) and Kinetic studies revealed that the adsorption followed pseudo second order kinetics.
The BTS surface area of MMCS was found as 35.4613 cm?/g which is a moderate surface

area for fluoride adsorption.

[192] in his study used modified immobilized activated alumina (MIAA) prepared by sol-gel
method for the removal of fluoride from aqueous solution. The modification was done by
adding a specific amount of alum during the sol formation step. The removal efficiency of
fluoride was reported as 1.35 times higher as compare to normal immobilized activated
alumina, the maximum removal of fluoride was obtained at pH 7 at a stirring rate of 150 and
at a temperature of 20°C with an initial fluoride concentration of 12 mg/l. More than 90% of
fluoride was removed within 60 minutes of contact time and maximum fluoride adsorption
capacity was found to be 0.76 mg/g. Langmuir adsorption isotherms fitted well for the
fluoride adsorption on MIAA with the regression coefficient R’ of 0.99 which suggested

monolayer adsorption.

[193] uses a modified fly ash for the removal of fluoride. Two types of bed were prepared,
bed 1 was prepared by treatment with 12M HCL followed by neutralization with SM NaOH
solution. The reaction mass was filtered, washed, dried and crushed to fine powder and bed 1
was mixed with alum and MgCl: solution and treated with 0.9M Na>COs until pH reached to

4.5. Mass was again filtered, washed, dried at 120°C for 4 hours and crush to the fine powder
which was taken as bed 2 material. Among them, bed 1 was used to maintain pH and bed 2
was used for defluoridation. Now initial fluoride concentration of 100ppm was taken with an

adsorbent dose of 15g and allowed to passed through bed 2 and were found to contain no
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fluoride but the pH was 5.4-5.5 to maintain the pH as per WHO it was again passed through
bed 1.

[194] used treated bark of Phyllanthus emblica (amla) tree as an adsorbent where the
maximum removal occurred at pH 7 with an optimum dose of 1.5g/l for a concentration of
fluoride ion with 5mg/I at an optimum contact time of 60 min. Adsorption model of PTB well

fitted in Freundlich model at 30°C.

Coconut shell activated carbon was used by [195], as an adsorbent where the maximum
efficiency of 65.9% was obtained with a particle size of 150u. Coconut shell activated carbon
were used at a pH of 2 with an initial fluoride concentration of 14mg/l and adsorbent dose of

160g/1.

[196] used tamarind (Tamarindus indica) fruit cover (TNFC) as a natural adsorbent in virgin
and acid treated forms. The maximum adsorption capacity of virgin TNFC and treated TNFC
sorbents as obtained from the Langmuir adsorption isotherm was found to be 4.14 mg/g and

6.11 mg/g of fluoride at a pH 6 and both natural and acid treated (TNFC) forms followed

pseudo-second-order kinetic model.

[197] demonstrated the potential for selective adsorption of fluoride ions with rice husk. In
their analysis, the optimum sorbent dose was found to be 10g/L by varying the dose of
adsorbent from 0 to 16g/L; equilibrium was achieved in 120 min for the optimum pH 2 with a
fluoride ion concentration of 5 mg/l, maximum fluoride removal was observed to be 75% at

optimum conditions.

Custard apple as an adsorbent was used by [198], found that an efficiency of 95% was
achieved at optimum parameters of pH 7, contact time 30 min, agitation speed 500 rpm, and
adsorbent dosage 1.5g per 50 mL of fluoride water with a concentration of (2-10 ppm),

Langmuir isotherm fitted well for the adsorption of fluoride ion on custard apple.

[199], used thermally activated bio-sorbents prepared from banana (Musa paradisiaca) peel
and coffee (Coffea arabica) husk as an adsorbent with efficiency ranging from 80 to 84 %
with an optimum pH of 2 for both the adsorbents, and the optimum dose was found to be 24
g/ 250 mL at 13-hour contact time for banana peel and 18 g/250 mL at 3 hour contact time
for coffee husk. Fluoride concentrations in flour factory, poultry, and Lake Hawassa water

samples were found to be 12.54, 11.02, and 6.72 mg/L, respectively. The Langmuir
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adsorption model and pseudo second-order reaction kinetics were fitted best to the adsorption

Process.

Coconut root as an adsorbent was used by [200], for the removal of fluoride. For this
analysis, maximum fluoride removal of 93.48% was attained with adsorbent dose of 8 g/L,
contact period 90 min, stirring speed 80 rpm and temperature 50 °C when the initial
adsorbate concentration was 5 mg/L. The adsorption kinetic data fitted well with the pseudo-
second-order kinetic model and adsorption isotherm can be best described by Langmuir

1sotherm model.

[166] used low-Cost sugarcane bagasse for defluoridation and as per they reported 45%
fluoride removal was found at a contact period of 60 min with initial fluoride concentration
of 4 mg/l at a adsorbent dose of 1 g/L. and maximum uptake of fluoride was found to be 4.12
mg/g. The adsorption kinetic data fitted well with the pseudo-second-order kinetic model and

adsorption isotherm was best described by Langmuir isotherm model.

[201], used bio-adsorbent from possotia (Vitex negundo) leaf, their study showed that the
PLP can remove more than 70% of fluoride from a 3-ppm aqueous solution on its own at a
normal pH range of 7-8, with a contact time of 120 min and 3 g/L of its dose. And adsorption

kinetics data were fitted to pseudo second order kinetics.

[202], in their study used several materials as adsorbent which showed maximum fluoride
sorption capacity at pH 6.0, temperature 25°C, with rpm of 150 and contact time of 5 hour
respectively. When compared for different adsorbents, defluoridation order was found to be

as: shell powder > bone powder > alumina treated bagasse fly ash > bone powder > bagasse.

[203], calculated maximum removal efficiency of 85% at pH 2 with a contact time of 120
min and an initial fluoride concentration of 10mg/1 at an adsorbate dose of 10g/l using a low-

cost bio-sorbent alkali treatment neem leaf as an adsorbent to remove the fluoride from water.

[204], used guava seeds modified with aluminium as bio-sorbent for their research. They
collected guava seeds (Psidium guajava) from a local traditional candy factory. In their study,
they found that maximum fluoride adsorption capacity was to be 0.3445 mg/g at a optimum
pH of 6, contact time 150 min at temperature 30°C with an initial fluoride concentration of 10

mg/l. The adsorption process followed Langmuir adsorption model.

[165], demonstrated the potential for selective adsorption of fluoride ions with tea ash as an

adsorbent. It was also shown that tea ash has enough potential to remove fluoride (8.55 mg/g)
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from aqueous solution and also found that maximum adsorption occurs in acidic pH and
further increase of pH showed less adsorption. This can be attributed to the neutralization of
the negative charges at the surface of bio-sorbent by greater hydrogen concentration at lower
pH values. The adsorption process observed Langmuir adsorption model and pseudo second-

order reaction kinetics.

Activate carbon of Catha edulis was made for the removal of fluoride from aqueous solution
by [181]. Their study showed that maximum fluoride removal of 73% was observed at an
optimum condition with the corresponding adsorbent dose of 1.5 g in 100 mL, contact time of
60 min and pH of 2 in a 30mg/l of initial fluoride concentration. Freundlich isotherm (R* =
0.98) was better fitted to the experimental data, which indicated that the adsorption process

was multilayer and heterogeneous.

In adsorption, equilibrium time is reached when there is no more substantial adsorption of
adsorbate onto the adsorbent after a certain amount of time has passed, or when adsorption is
no longer a time-dependent process.Table 3 to table 7 depicts the results for the
corresponding equilibrium values achieved during different defluoridation studies done by
various researchers for pH, Temperature, contact time, initial fluoride concentration and RPM

respectively.

From table 3, it is understood that for most of the analyses, adsorption was favoured at lower
pH and in acidic condition, an illustrative example is shown by using figure 3 [165]. That
means for maximum of the studies, point of zero charge values for adsorbents were lower
than neutral pH before adsorption which indicates that the adsorbent surfaces were positively
charged and hence, they were ready to uptake anions as adsorbate and that is perfectly
justified from the fact that fluoride is a negative ion of fluorine, Fluoride often is written as F
which means fluoride is anionic.Also, apart from pH, other parameters that effects the

adsorption nature are temperature, flow rate etc.

Table 3. Equilibrium pH values for different defluoridation studies using adsorption

SI. No Type of adsorbent pH at References
equilibrium
adsorption

1 Treated amla bark 7 194

2 Activated tea ash Powder 6 165
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3 Rice husk 2 197
4 Neem leaf 2 203
5 Banana Peel 2 199
6 Coffee husk 2 199
7 Date palm seed 7 205
8 Sugarcane 54 166
9 Coconut root 7 200
10 Catha edulis (Khat) 2 181
11 Custard apple 7 198
12 Mukondenu clay soil 2 191
13 modified immobilized 7 192
activated alumina

14 Coconut shell 2 195
15 Tamarind fruit cover 6 196
16 Vitex negundo leaf 8 202
17 Guava seed 6 170

—m— Effect of pH on adsorption of fluoride ion onto adsorbent
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Fig.3. Effect of pH on removal of fluoride onto AcTAP (activated tea ash powder) Operating

parameters: stirring speed: 300 RPM, Contact time: 60 minutes, sorbent dose: 0.8 gm/L,

Temperature: 303 K, Particle size: 100 um, Initial fluoride concentration: 5.0 mg/L [165]

Because sorption is an exothermic process, it has traditionally been assumed that increasing

the temperature will reduce the adsorbents' sorption capacity. However, because of

endothermicity, if the adsorption process is regulated by diffusion (pore diffusion,

intraparticle), the sorption capacity will increase as the temperature rises.As the temperature

rises, the adsorbate's mobility increases and the retarding forces acting on the diffusing

adsorbates decrease. Furthermore, as the temperature rises, the active sites of the adsorbents

increase as well. As a result, the adsorptive capacity of the adsorbent is increased [206].Table

4 illustrates for the suitable temperature values obtained by various researches in their study.

Table 4. Favouredtemperaturevalues for different defluoridation studies using adsorption

SI. No Type of adsorbent Favoured References
temperature (°C)
for adsorption
1 Treated amla bark 30 194
2 Activated tea ash Powder 30 165
3 Rice husk 30 197
4 Neem leaf 27 203
5 Banana Peel 30 199
6 Coftee husk 30 199
7 Date palm seed 32 205
8 Sugarcane 30 166
9 Coconut root 26 200
10 Catha edulis (Khat) 25 181
11 Custard apple 30 198
12 Mukondenu clay soi 25 191
13 modified immobilized 20 192
activated alumina
14 Coconut shell 25 195

https://acervojournal.org/| | Page No:36



Acervo| | ISSN: 2237 - 8723 Vol 07, Issue 11] | 2025
https://doi.org/10.5281/zenodo.17565120

15 Tamarind fruit cover 25 196
16 Vitex negundo leaf 30 202
17 Guava seed 30 170

[198] in their defluoridation study using dry and pyrolyzed custard apple powder (refer figure
4) found that adsorption was higher at higher temperature so their process was endothermic.
They discovered that when the temperature was raised from 303 K to 333 K, the proportion
of dry leaf powder removed increased from 69 to 88 percent. When the temperature was
raised from 303 K to 333 K, the proportion of Pyrolyzed leaf powder removed increased from
93 percent to 99 percent. The temperature difference is not noteworthy in this case because
the rise is only 6%.The pyrolyzed leaf adsorbent had already reached its saturation point. As
a result, temperature had the least impact in this scenario. The fact that the percentage
fluoride removed increases significantly as the temperature rises suggests that the adsorption
process was endothermic in nature. The solubility and, in particular, the chemical potential of
the adsorption are affected when the temperature of the solution rises [192].Rise in
temperature leads to increase in diffusivity of fluoride molecules and hence an increase in the
adsorption rate. This method may confirm that the rate-controlling stage in this process is
diffusion. When compared to Dry leaf powder, Pyrolyzed leaf powder had a higher fluoride

removal effectiveness.
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Fig.4. Effect of temperature for fluoride removal by dry leaf and pyrolyzed leaf [198]
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It is a general observation in any adsorption process that the reaction is rapid in initial phases
and gradually the interaction slows down with time and there is no difference for
defluoridation also. In their study, [166], discovered that for an initial fluoride concentration
of 4 mg/L, the percent removal of fluoride was very fast at the initial stages, with roughly 45
percent removal occurring within 60 minutes. After 60 minutes, the rate of removal did not
significantly rise, and after 5 hours, adsorption processalmost stopped. Fluoride uptake
appeared to reach saturation after 60 minutes, indicating fast kinetics.The presence of
particular functional groups and active surface locations in the adsorptive removal of fluoride
ion may explain the initial fast adsorption [207]. However, as the initial fluoride
concentration in the aqueous phase increased from 4 to 8 mg/L, the fluoride removal
efficiency decreasedfrom 44 to 24 percent.As a result, during the later stages of adsorption,
the adsorption slows down. Similar observation was also reported[208].Table 5 represents for
the several equilibrium contact time readings obtained by researchers during their study. An

illustrative contact time study has been also been depicted using figure 5 [201].
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Fig.5. Effect of contact time vs fluoride concentration [201]
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Table 5. Equilibrium contact time values for different defluoridation studies using adsorption

SL Type of adsorbent Contact time References
No (min)at equilibrium
adsorption
1 Treated amla bark 300 194
2 Activated tea ash Powder 180 165
3 Rice husk 120 197
4 Neem leaf 120 203
5 Banana Peel 780 199
6 Coffee husk 180 199
7 Date palm seed 40 205
8 Sugarcane 60 166
9 Coconut root 90 200
10 Catha edulis (Khat) 60 181
11 Custard apple 30 198
12 Mukondenu clay soi 60 191
13 modified immobilized 60 192
activated alumina

14 Coconut shell - 195
15 Tamarind fruit cover - 196
16 Vitex negundo leaf 120 202
17 Guava seed 150 170

Through a combination of factors such as the availability of specific surface functional
groups and the capacity of surface functional groups to bind fluoride ions, the fluoride
removal efficiency can be altered [203].The initial fluoride concentration in the solution can
be a powerful driving factor in overcoming the fluoride ion's mass transfer resistance between
the aqueous and solid phases [165, 166].Table 6 illustrates the values of initial fluoride
concentrations considered by various researchers. Figure 6 illustrates a study on effect of

initial fluoride concentration on its removal capacity [179].
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Table 6. Initial fluoride concentration considered for different defluoridation studies using

adsorption
SI. No Type of adsorbent Initial fluoride References
concentration
(mg/l) taken
1 Treated amla bark 5 194
2 Activated tea ash Powder 5 165
3 Rice husk 5 197
4 Neem leaf 10 203
5 Banana Peel 10 199
6 Coffee husk 10 199
7 Date palm seed 5 205
8 Sugarcane 4 166
9 Coconut root 5 200
10 Catha edulis (Khat) 30 181
11 Custard apple 10 198
12 Mukondenu clay soi 10 191
13 modified immobilized 12 192
activated alumina
14 Coconut shell 14 195
15 Tamarind fruit cover 10 196
16 Vitex negundo leaf 3 202
17 Guava seed 10 170
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Fig.6. Effect of initial fluoride concentration on its removal capacity [179]

It has been observed that during adsorption, the process of removal of pollutants increases
with an increase in the mixing/stirringspeed (RPM), but further increase in speed after a
certain value leads to a decrease or reversal in removal of pollutents from solution. The
reverse migration of dye molecules from the adsorbent surface to the solution occurs when
the shaker's rotating speed increases, i.e., at high RPM values.The rotational speed results in
more kinetic energy gain by the dye molecules and it further results in the reduction of effect
of boundary layer. Thus, when rotational speed initially increases, adsorption also increases.
Due to the difference in masses, a centripetal force (mwm?r) acts on the adsorbed dye molecule
and adsorbent differently, which may result in the small reduction in removal of dye at rpm
more than a optimum value. So, they always tend to readapt radius of their path which results
in a development of repulsive force between them. As the rotational speed increases, the
magnitude of separative force also increases and becomes greater than the binding force,
especially the weaker Vaan der wall force when rpm exceeds a certain value. As a
result,removal of dye from solution decreases at very high speed of desorption. Since in
physical adsorption the binding force is not as stronger as compared to chemical adsorption,
therefore, desorption might get influenced because of increased rotational speed of the
shaker. Table 7 depicts for RPM values obtained at equilibrium by various researchers in
their defluoridation studies.Figure 7 illustrates for effect of stirring time for fluoride removal

capacity [197].
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Table 7. RPM observed at equilibrium for different defluoridation studies using adsorption

Vol 07, Issue 11] ] 2025

SI. No Type of adsorbent RPM observed at | References
equilibrium
1 Treated amla bark 150 194
2 Activated tea ash Powder 300 165
3 Rice husk 40 197
4 Neem leaf 200 203
5 Banana Peel 200 199
6 Coffee husk 200 199
7 Date palm seed 205
8 Sugarcane 150 166
9 Coconut root 80 200
10 Catha edulis (Khat) 181
11 Custard apple 500 198
12 Mukondenu clay soi 250 191
13 modified immobilized 150 192
activated alumina
14 Coconut shell 150 195
15 Tamarind fruit cover 200 196
16 Vitex negundo leaf 202
17 Guava seed 100 170
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Fig.7. Effect of RPM on fluoride removal capacity [197]

Because more adsorbent sites are available, the percentage removal of fluoride increases with
increasing adsorbent dosages at the initial concentration [166]. All active sites are eventually
occupied, and the percentage removal gradually becomes constant [187, 208, 209, 210].The
same phenomena have been reported by various studies [197, 201]. It has been found that as
the adsorbent dose was increased, the percentage of adsorption increased, while loading
capacity (amount of fluoride adsorbed per gram of adsorbent) declined, indicating that the
number of interaction sites between the adsorbent and adsorbate reduced. This is most likely
owing to an increase in the number of adsorption sites [165]. According to another study
[179], adsorption capacity increased with increasing adsorbent dose due to higher adsorption
area and thus availability of more adsorption sites [211] up to a point, after which further
increases in adsorbent dose are actually accompanied by a decrease in adsorption capacity
due to a reduction in fluoride/active adsorbent binding site ratio [212]. According to another
study [196], the amount of adsorbent used has a substantial impact on the degree of fluoride
adsorption. The availability of a greater number of fluoride ions per unit mass of adsorbent,
i.e., a larger fluoride/adsorbent ratio, accounts for this increase in loading capacity. It can also
be shown that, up to adsorbent doses of 0.7 g, fluoride removal improved significantly due to
an increase in the adsorbent site /fluoride ratio; however, subsequent increases in adsorbent
dose did not result in any meaningful improvement in fluoride removal. This could be due to
the fact that the equilibrium concentration of fluoride is so low that the driving force
responsible for adsorption is insignificant. The removal of fluorides begins to decline and
stabilise in another research [170], which the authors ascribe to a bigger quantity of active

sites not occupied by the F  ions, both on the surface and in the pores of the bio-sorbent, as
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well as bio-sorbent crowding [171, 213, 214].Figure 8 illustrates for the effect of adsorbent

dose on fluoride removal [170].
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Fig. 8. Effect of adsorbent dose on fluoride removal [170]

3.4 Studies for adsorption kinetics for defluoridation

As discussed in section 2.1.1 of this article, analysis of rate kinetics is very important. Table 8
reports for the various parameters obtained during the Pseudo first and second order kinetic
modelling respectively for the same sorbate-sorbent interactions for several separate studies.
Suitability of kinetic model (whether Pseudo first order or second order) for all the individual
researches can be interpreted by observing the R? (coefficient of corelation, best fit value)
values for each of the separate studies.Closer the value of R? to unity, better the suitability of
that kinetic model to the particular adsorption interaction. Qmax in the table denotes for
maximum adsorption capacity. Also, another table (table 9) is illustrating the suitability of a
particular kinetic model (Pseudo first order or second order) found out by various researchers
during their experimentations. As reported in table 9 it was observed that apart from some
unreported kinetic models, studies done by various researchers supported pseudo second
order rate kinetic indicating quick adsorption rate and enhanced adsorption.Also, figure 9
depicts for an illustrative study [166] for Pseudo second order kinetic model for different

initial fluoride adsorption.
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Table 8. Pseudo first order and second order rate kinetic parameters reported for various
defluoridation studies

Type of Initial | Qpuax Pseudo first order Pseudo second order Refe
Adsorbent fluori | (mg/ parameters parameters renc
de 2) es
conce Aver Averagecorrela Aver Averagecorrela
ntrati agek( tioncoefficient( agek( tioncoefficient(
(I::/L x10° R?) x107) R?)
) 2) 1
1 (min-1)
(min'l)
Tamarindfrui | 2-8 | 82.16 | 4.243 0.885 3.063 0.866 215
tshellcarbon 0
Guavaseeds 5 0.148 | 4.895 0.959 39.000 0.984 216
Magnesium 5-20 | 1.039 | 2.530 0.970 5.310 0.997 217
chloridemo
di-
fiedpumice
aluminum 1 2.337 | 0.739 0.825 2.032 0.987 218
impregnate
d
coconutfiber
Hydrogenp 520 | 1.147 | 2.258 0.931 5.885 0.998 217
eroxidemo
di-
fiedpumice
Nanohydroxy | 9-15 | 1.778 | 0.199 0.949 0.231 0.999 219
apatite chi-
tosan
Treatedbanan 10 - 0.084 0.953 3.202 0.984 199
apeel
Naturalpumic | 520 | 1.132 | 2.650 0.969 4.535 0.996 217
e
Treatedcoffee 10 - 0.072 0.878 3.394 0.981 199
husk
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Fig. 9. Pseudo second-order kinetics for removal of fluoride by bagasse (m =1 g/L, pH = 5.4,

T =303 K[166]

Table 9. Favoured kinetic models reported for various defluoridation studies

SL. No Type of adsorbent Favoured Kinetic References
model
1 Treated amla bark - 194
2 Activated tea ash Pseudo-Second-order 165
Powder
3 Rice husk - 197
4 Neem leaf - 203
5 Banana Peel Pseudo-Second-order 199
6 Coffee husk Pseudo-Second-order 199
7 Date palm seed - 205
8 Sugarcane Pseudo-Second-order 166
9 Coconut root Pseudo-Second-order 200
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10 Catha edulis (Khat) - 181
11 Custard apple - 198
12 Mukondenu clay soi Pseudo-Second-order 191
13 modified immobilized - 192
activated alumina
14 Coconut shell Pseudo-Second-order 195
15 Tamarind fruit cover Pseudo-Second-order 196
16 Vitex negundo leaf Pseudo-Second-order 202
17 Guava seed Pseudo-Second-order 170

3.5 Analysis for isothermsduring defluoridation studies

Significance of isotherm equilibrium modelling is discussed in section 2.1.2 of this article.
Tablel0 is illustrating the suitability of particular isotherm models found out by various
researchers during their researches. On the other hand, table 11 and table 12 reports for the
Freundlich and Langmuir isotherm constant parameter values obtained during several
defluoridation studies. Also, figure 10 demonstrates for suitability of experimental data‘s

against different isotherm models for the removal of fluoride [165].

Table 10. Favoured isotherm equilibrium models reported by various defluoridation studies

SI. No Type of adsorbent Favoured Isotherm | References
model

1 Treated amla bark Freundlich 194

2 Activated tea ash Powder Langmuir 165

3 Rice husk Freundlich 197

4 Neem leaf - 203

5 Banana Peel Langmuir 199
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6 Coffee husk Langmuir 199
7 Date palm seed - 205
8 Sugarcane Langmuir 166
9 Coconut root Langmuir 200
10 Catha edulis (Khat) Langmuir 181
11 Custard apple Langmuir 198
12 Mukondenu clay soi Freundlich 191
13 modified immobilized Langmuir 192
activated alumina
14 Coconut shell Freundlich 195
15 Tamarind fruit cover Langmuir 196
16 Vitex negundo leaf Freundlich 202
17 Guava seed Langmuir 170
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Fig. 10. Experimental vs various isotherm profiles for the removal of fluoride by using
ACcTAP (activated tea ash powder) for different initial concentration (mg/1). (Operating
parameters: sorbent dose: 2.4 mg/L, contact time: 180 minutes, particle size: 50 m,

Temperature: 303 K, solution pH: 6.0, stirring speed: 300 RPM) [165]

Table 11. Freundlich constant values obtained during various defluoridation studies

Type of adsorbent Freundlich constants References
1/n K R’

Aluminumimpregnatedcoconutfib | 1.254 0.301 0.440 218
er 0.809 5.984 0.155
3.267 0.004 0914

Pithacelobiumdulcecarbon 0.614 | 0.0204 | 0.998 220
Ipomoeabatatascarbon 0.747 | 0.0043 0.997
Peltophorumferrugineumcarbon 0.719 | 0.0421 0.997

Magnesiumchloridemodifiedpumi 0.44 0.535 0.887 217
ce 0.619 0.777 0.952

Nanohydroxyapatite 0.198 1.280 0.970 219

0.203 1.412 0.992
0.22 1.423 0.995

La3Tpolyamidoaminegraftedchito | 0413 0.385 0.994 221
sanbeads 1.58 1.87 0.998
0.296 2.68 0.999
Activatedcarbon 0.53 0.08 0.999 222
0.38 4.54 0.900 31
0.69 1.3 0.900
0.83 0.6 0.830
Carbonblack 0.35 0.07 0.999 222
Bonecharcoal 0.39 1.06 0.998
Nanohydroxyapatite 0.198 1.280 0.970 219

0.203 1.412 0.992
0.22 1.423 0.995
Assimilationofchitinwithtin 0.493 2.20 0.998 223
0.544 1.67 0.989
0.625 1.14 0.984
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Zr4+polyamidoarnine graftedchito | 0-170 9.582 0.997 221
sanbeads 0.197 9.886 0.999
0.224 | 10.169 | 0.998
Treatedbananapeel 0.253 | 0.1775 | 0.973 199
Treatedcoffeehusk 0.217 | 0.2256 | 0.993
Pumicestone 0.31 27.6 0.950 101
0.39 0.521 0.983
Guavaseeds 0.606 2.248 0.980 216

0943 | 0.1663 | 0.987
0.827 | 0.5092 | 0.982

La3Tpolyamidoaminegraftedchito | 0413 | 0.385 | 0.994 221
sanbeads 1.58 1.87 0.998

0.296 2.68 0.999

Table 12. Langmuir constant values obtained during various defluoridation studies

Type of adsorbent Langmuir constants References
Amax RL B
(mg/g)
Alum impregnatedactivated alumina 192.65 | 3 69x1074 | 0.670 224

40.68 | 904x10-3 | 0.600

198 | 6.60x10~-5 | 0.500

Treatedbananapeel 0.395 0.426 0.998 199
Treatedcoffeehusk 0.416 0.789 0.998
Pithacelobiumdulcecarbon 0.0700 0.4202 0.276

Ipomoeabatatascarbon 0.0710 0.4485 0.246 220
Peltophorumferrugineumcarbon 0.571 0.4884 0.209

La3 *polyamidoaminegraftedchitosanbeads 10.37 0.625 0.040 221

11.36 0.571 0.050

11.45 0.455 0.080

Pumicestone 41.65 0.163 0.255 101

Guavaseeds 116.5 0.0051 0.997 216

316.5 0.003 0.998

413.8 0.007 0.996

Assimilationofchitinwithtin 12.47 0.12 0.160 223

https://acervojournal.org/| | Page No:50




Acervo| | ISSN: 2237 - 8723 Vol 07, Issue 11] | 2025
https://doi.org/10.5281/zenodo.17565120

13.44 0.21 0.090

14.77 0.35 0.060
Magnesiumchloridemodifiedpumice 5.56 0.312 0.285 217
Nanohydroxyapatitechitincomposite 8.41 - - 219
Hydrotalcite/chitosancomposite 1.876 - - 225
Magneticchitosanparticle 23.98 - - 226
16.377 0.018 2.782 221

Zn4+polyamidoaminegraftedchitosanbeads

16.903 0.024 2.877

17.483 0.025 3.891

Aluminiumimpregnatedcoconutfiber 1.128 0.183 - 218
5.60 12.273 -
5.827 12.636 -
Nanohydroxyapatite 2.04 0.0801 1.260 219
Chitosancomposite 2.247 0.077 1.337

2.320 0.078 1.306

Hydrogenperoxidemodifiedpumice 11.76 0.297 0.173 217

3.6 Studies for activation energy and thermodynamic parameters

[165] used activated tea ash powder as adsorbent for fluoride removal. In their analysis they
calculated activation energy Ea.as 32.01 KJ/mol from the graph of In k vs. 1/T as per the
equation as listed as equation 16 of section 2.1.3 of this article. Magnitude of activation
energy indicates for the nature of adsorption as to whether the adsorption is driven by
physical or chemical process [227]. The Ea value obtained by [165] implies that the
adsorption of fluoride ions is a physical adsorption process. This result is consistent with the
D-R isotherm results. Gibb's free energy change (AG), enthalpy change (AH?), and entropy
change (AS°) were determined as thermodynamic parameters connected with the adsorption
processas per the equations 17, 18 and 19 described in section 2.1.3 of this article. In their
analysis they obtained the values of AG%,AH® and AS° as all negative.The fact that AG? is
negative at all temperatures implies that the fluoride ions were adsorbedwith spontaneity.
Lower AG® values with increase in temperature, suggests adsorption was easier at lower
temperatures. The negative value of AH? indicates that the adsorption process is exothermic,

and the negative value of AS? indicates that the process is enthalpy driven.
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AG? values for fluoride removal using sugarcane bagasse were determined to be in the range
of —24.696 to —28.056 kJ/mol with a temperature increase from 293 to 323 K [166]. The
decrease in AG® values as temperature rises suggests that the fluoride adsorption process on
bagasse becomes more favourable at higher temperatures [78, 228]. Negative AG® denotes
the adsorption's feasibility and spontaneity. The positive AH® value obtained confirms that
the entire sorption process is endothermic, and the value is 8.117 kJ/mol. 0.111 kJ/mol K is
found to be the AS® value. The positive value of AS'indicates bagasse's fluoride affinity and
suggesting that the degree of disorder is increasing. The fact that AS? is positive indicates that

the adsorption process is entropy driven.

Another study [179] looked at the thermodynamics of fluoride adsorption on thermally
activated carbon made from coconut tree roots (C. nucifera Linn. Root). Temperature of 20—
50 °C, initial fluoride concentration of 5 mg/L, dose of adsorbent of 8 gm/L, contact length of
90 minutes, and agitation speed of 80 RPM were their preliminary input parameters. They
discovered that as the temperature rose, the effectiveness of sorption and sorption capacity
increased. The most likely reason for this is pore size enlargement [211], which means that as
the temperature rises, the surface thickness of C. nucifera Linn. root adsorbent decreased, and
the kinetic energy of adsorbate ions rapidly increased, increasing the diffusion rate of
adsorbate ions along the exterior border layer and intramural pores of C. nucifera Linn. root
adsorbent [229]. The sorption phenomenon's appropriateness and the spontaneous nature of
fluoride sorption onto C. nucifera Linn. root adsorbent is highlighted by the negative value of
AG? obtained with respect to different temperatures. With a rise in temperature, the more
negative AG® values become, indicating that higher temperatures favoured sorption. The fact
that AH? (12.728 kJ/mol) is positive in their study implies that the adsorption mechanism is
endothermic [230]. The positive value of entropy change AS® in their research shows that
when temperature rises, randomness rises as well. Thermodynamic studies of fluoride
adsorption using P. emblica activated carbon [231], activated carbon generated from the
Ficus racemosa plant [232], activated biochar from domestic food waste [233], and pumice

stone adsorbent [101] all yielded similar results.

Saikia et al., 2017, in their analysis of fluoride removal using treated possotia leaf observed
that their AG® values were all positive for different temperature study and AH® and AS°
wereall negative. They [234] concluded that the negative values of AH° suggest the
exothermic nature of the adsorption process based on the nature of the values, The negative

AS? values reflect a decrease in randomness at the PLP (possotia leaf powder) surface during
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the adsorption process, whereas the AG® values demonstrate the practicality of adsorption at

low temperatures, demonstrating the bio-utility of the sorbent's at room temperature.
3.7 Desorption of fluoride

To develop a meaningful and economical adsorbent for defluoridation, it is critical to desorb

the fluoride adsorbed for the reusability of the sorbent media.

[166] investigated the desorption of fluoride from loaded adsorbents (sugarcane bagasse) at
various pH levels (2-12). An initial concentration of 4 mg/L, a period of 1 hour, a
temperature of 293 K, and an optimum dose of 1 gm/L were used for desorption study. The
rate of desorption was determined to be 3—4%. Bagasse desorption efficiency was low, and a
significant amount of fluoride could not be removed. According to them,bagasse is also
available as a waste material in India,as a result, desorption and regeneration of spent bagasse
is not advised. They recommended that the used bagasse be filtered out of the mixture,
dewatered, sun dried, and then burned as fuel in a boiler, furnace, or traditional chulha used
for cooking in rural India to recover its energy worth.It can also be used as a filler for
levelling low-lying regions when mixed with dirt or sand. According to them, it is more cost

effective to dispose of low-cost adsorbents rather than regenerate them.

[167] emphasised that desorption of adsorbed fluoride ions is required to investigate the bio-
recycling sorbent's capabilities. Fluoride ion, being an anion, was desorbed by raising the pH
of the solution above pHpc, according to their findings. NaOH(0.1M) solution was used to
raise the pH.Because IPXFR (immobilised protonated xanthate modified Ficus religiosa) had
improved absorption results, the xanthate modified adsorbent was used to investigate
desorption. Desorption was also explored in a continuous way. The maximum was reached in
about 37 minutes during the first cycle of desorption (75 mL of eluting agent).The column
was discovered to regenerate completely in 75 minutes (150 mL of eluting agent). A second
adsorption-desorption cycle was performed on the column. The periods for maxima and full
regeneration remained unchanged in the second cycle. During this cycle, the column's
removal percentage (R%) was reduced from 100 percent to 75.67 percent.The degradation of
IPXFR in the presence of a strong alkali solution could be the reason for the drop in percent

removal.

[196] stated that the sorbent can be regenerated using a variety of processes such as solvent
extraction, thermal desorption, steam washingand so on. Each method has its own set of

benefits and drawbacks.Several solvents were explored to rejuvenate the TNFC (Tamarind
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fruit cover) adsorption bed in their research. The use of a 0.1 M NaOH solution was shown to
be better in desorbing and eliminating fluoride ions from the adsorbent bed quantitatively.The
fluoride-saturated fixed bed columns of adsorbents are regenerated by flowing 0.1 M NaOH
solution as an eluent at a set flow rate of 1.0 mL/min. Maximum desorption occurred at 100

mL of 0.1 M NaOH solution, while complete fluoride regeneration occurred at 150 mL.

Desorption studies aid in the understanding of adsorption and recycling of wasted adsorbent
and adsorbate. [165] carried out a fluoride desorption analysis using different regeneration

media, such as 25% NaOH and 1(N) HCI. Adsorbed fluoride desorption on AcTAP (activated

tea ash powder) was successful with a high percentage desorption value of 91.68%.

4. Conclusion

In this review article we have reported different organic and in-organic adsorbents used by
different researchers for the removal of fluoride from aqueous solution. Study also found that
adsorption is influence by various parameters like pH, contact time, temperature, stirring rate,
initial concentration. Adsorption kinetic are explained by pseudo first order and second order
models and adsorption Isotherm are best explained by either Langmuir or Freundlich
isotherms. From this study it can concluded that modification of raw adsorbents into treated

or activated carbon form gives better defluoridation using adsorption in aqueous solution.
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