

T-NORM UNCERTAINTY SOFT MODULO GROUP WITH RESPECT TO INCLUSION OF SOFT SETS

Rathinam Nagarajan¹

¹Professor, Department of Mathematics, JJ College of Engineering & Technology.

Tiruchirappalli-620009, Tamilnadu, India

Abstract: In this paper, we introduce the notion of T-fuzzy soft N-subgroups by using Molodtsov's definition of soft sets and investigate their related properties with respect to α -inclusion of soft sets.

Keywords: soft set, fuzzy soft set, soft N- group, complete, T- fuzzy soft N-group, α -inclusion.

Section-1: Introduction: In 1999, Molodtsov's [10] proposed an approach for modeling, vagueness and uncertainty, called soft set theory. Since its inception, works on soft set theory have been progressing rapidly with a wide-range applications especially in the mean of algebraic structures as in [1-14]. The structures of soft sets, operations of soft sets and some related concepts have been studied by [10-13]. Agun and Sezgin [3] defined soft N- subgroups and soft N-ideals of an N-group. They studied their properties with respect to soft set operations in more detail. In this paper, the notion of T- fuzzy soft N-subgroups by using Molodtsov's definition of soft sets are discussed and investigate their related properties with respect to α -inclusion of soft sets.

Section-2 Preliminaries

This section contains some basic definition and preliminary results which will be needed in the sequel. In what follows let G and S denote a group and max-norm respectively unless otherwise specified.

Definition 2.1 : By a near ring, we shall mean an algebraic system $(N, +, \cdot)$, where

- (i) $(N, +)$ forms a group (not necessarily abelian)
- (ii) (N, \cdot) forms a semi group and
- (iii) $(a+b)c = ac + bc$ for all a, b in N .

Throughout this paper, N will always denote a right near ring whose zero element in 0_N . A subgroup M or N write N is contained in M is called a sub near ring of N . For a near ring N , the zero symmetric part of N denoted by N_0 is defined by $N_0 = \{ n \in N / nN_0 = O_N \}$

Definition 2.2: Let $(G, +)$ be a group and $A: N \times G \rightarrow G$, $(n, g) \rightarrow ng$, (G, A) is called an N -group if for all $x, y \in N$, for all $g \in G$,

- (i) $x(yg) = (xy)g$ and
- (ii) $(x+y)g = xg + yg$. It is denoted by N^G .

Clearly, N itself is an N -group by natural operation. A subgroup H of G with NH contained in H is said to be an N -subgroup of G . Let N be a near-ring and G and ψ two N -groups. Then $f: G \rightarrow \psi$ is called N -homomorphism if for all $g, H \in G$, for all $n \in N$.

- (i) $f(g+H) = f(g) + f(H)$ and
- (ii) $f(ng) = nf(g)$. For all undefined concepts and notions, we refer [17].

From now on, U refers to an initial universe, E is a set of parameters, 2^U is the power set of U and A, B, C is subset of E .

Definition 2.3: Let X be a set. Then a mapping $\mu: X \rightarrow [0, 1]$ is called fuzzy subset of X .

Definition 2.4: Let U be a universal set, E set of parameters and A is a subset of E . Then a pair (F, A) is called soft set over U , where F is a mapping from A to 2^U , the power set of U .

Example 2.5: Let $X = \{c_1, c_2, c_3\}$ be the set of three cars and $E = \{\text{costly } (e_1), \text{ metallic colour } (e_2), \text{ cheap } (e_3)\}$ be the set of parameters, where $A = \{e_1, e_2\}$ is a subset of E . Then

$(F, A) = \{F(e_1) = \{c_1, c_2, c_3\}, F(e_2) = \{c_1, c_2\}\}$ is crisp soft set over X .

Definition 2.6: Let U be a universal set, E set of parameters and $A \subseteq E$. Let $F(X)$ denotes the set of all fuzzy subsets of U . Then a pair (F, A) is called soft set over U , where F is a mapping from A to $F(U)$.

Example 2.7: Let $U = \{c_1, c_2, c_3\}$ be the set of three cars and $E = \{\text{costly } (e_1), \text{ metallic colour } (e_2), \text{ cheap } (e_3)\}$ be the set of parameters, where $A = \{e_1, e_2\} \subset E$. Then

$(F, A) = \{F(e_1) = \{c_1/0.5, c_2/0.6, c_3/0.2\}, F(e_2) = \{c_1/0.4, c_2/0.5, c_3/0.7\}$ is the fuzzy soft set over U denoted by F_A .

Definition 2.8: Let F_A be a fuzzy soft set over U and α be a subset of U . Then upper α - inclusion of F_A denoted by

$$F_A^{+\alpha} = \{x \in A / F(x) \geq \alpha\} \text{ similarly}$$

$F_A^{-\alpha} = \{x \in A / F(x) \leq \alpha\}$ is called lower α -inclusion of F_A .

Definition 2.9: A triangular cnorm (t -norm) is a mapping $T : [0, 1] \times [0, 1] \rightarrow [0, 1]$ that satisfies the following conditions:

$$(S1) T(x, 0) = x,$$

$$(S2) T(x, y) = S(y, x),$$

$$(S3) T(x, S(y, z)) = S(T(x, y), z),$$

$$(S4) T(x, y) \leq S(x, z) \text{ whenever } y \leq z,$$

for all $x, y, z \in [0, 1]$.

Replacing 0 by 1 in condition T, we obtain the concept of t -norm T.

Lemma 2.10: Let 'T' be a t -norm. Then t -norm 'T' can be defined as $T(x, y) = 1 - S(1-x, 1-y)$.

Proof: straight forward

Definition 2.11: Let F_A and K_B be fuzzy soft sets over the common universe U and $\psi : A \rightarrow B$ a function. Then fuzzy soft image of F_A under ψ over U denoted by $\psi(F_A)$ is a set-valued function, when $\psi(F_A) : B \rightarrow 2^U$ defined by

$$\psi(F_A)(b) = \begin{cases} T\{F(a) / a \in A \text{ and } \psi(a) = b\}, & \text{if } \psi^{-1}(b) \neq \emptyset \\ \emptyset & \text{otherwise} \end{cases}$$

For all $b \in B$. The fuzzy soft pre image of K_B under ψ over U , denoted by $\psi^{-1}(G_B)$ is a set valued function where $\psi^{-1}(G_B) : A \rightarrow 2^U$ defined by $\psi^{-1}(K_B)(b) = G(\psi(b))$ for all $a \in A$. Then fuzzy soft anti image of F_A under ψ over U denoted by $\psi^*(F_A)$ is a set valued function, where

$$\psi^*(F) = \begin{cases} S \{F(a) / a \in A \text{ and } \psi(a) = b\}, \text{ if } \psi^{-1}(b) = \Phi \\ \Phi \quad \text{otherwise for all } b \in B. \end{cases}$$

Definition 2.12: Let H be an N - subgroup of G and F_H be a fuzzy soft set over G . If for all $x, y \in H$ and $n \in N$,

(i) $F_H(x-y) \geq T\{F_H(x), F_H(y)\}$ and

(ii) $F_H(nx) \geq F_H(x)$, then the fuzzy soft set F_H is called a fuzzy soft N -subgroup of G .

Definition 2.13: Let H be an N - subgroup of G and F_H be a fuzzy soft set over G . If for all $x, y \in H$ and $n \in N$,

(i) $F_H(x-y) \leq S\{F_H(x), F_H(y)\}$ and

(ii) $F_H(nx) \leq F_H(x)$, then the fuzzy soft set F_H is called T - fuzzy soft N -subgroup of G . It is denoted by $F_H \triangleleft_N G$

Example 2.14: Consider $N = \{0, 1, 2, 3\}$ be a near-ring with operations $+$ and \cdot .

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

•	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	1	2
3	0	3	2	1

Let $G = N$, $H = \{0,2\} \triangleleft_N G$ and F_H be a fuzzy soft set over G , where $F: H \rightarrow 2^G$ is a set valued function defined by $F(x) = \{0\} \cup \{y \in G / 3x=y\}$ for $x \in H$. Then $F(0) = \{0\}$ and $F(2) = \{0,2\}$. Therefore $F_H \triangleleft_N G$. If we define a fuzzy soft set K_H over G by $K(x) = \{y \in G / 3x=y\}$ for all $x \in H$. Then $K(0) = \{0\}$ and $K(2) = \{2\}$. since $K(2-2) = K(0)$ not in $K(2)$. K_H is not a T- fuzzy soft N-subgroup of G .

Definition 2.15: The relative complement of the fuzzy soft set F_A over G is denoted by F_A^r , where $F_A^r: A \rightarrow 2^U$ is a mapping given as $F_A^r(x) = G / F_A(x)$, for all $x \in A$.

Section-3 Properties of Intersection uncertainty soft N-subgroup

Proposition 3.1: Let F_H be a fuzzy soft set over G and α be a subset of G . If F_H is T- fuzzy soft N-subgroup of G , then lower α -inclusion of F_H is an N-subgroup of G .

Proof: since F_H is T- fuzzy soft N-subgroup of G .

Assume $x, y \in F_H^{-\alpha}$ and $n \in N$, then $F_H(x) \leq \alpha$ and $F_H(y) \leq \alpha$. We need to show that $x-y \in F_H^{-\alpha}$ and $n \in F_H^{-\alpha}$. Since F_H is T- fuzzy soft N-subgroup of G , it follows that $F_H(x-y) \geq T \{F_H(x), F_H(y)\} \geq T \{\alpha, \alpha\} \geq \alpha$ and $F_H(nx) \geq F_H(x) \geq \alpha$ which completes the proof.

Proposition 3.2: Let F_H be a fuzzy soft set over G and α be a subset of G . If F_H is fuzzy soft N-subgroup of G , then upper α -inclusion of F_H is an N-subgroup of G .

Proof: since F_H is T-fuzzy soft N-subgroup of G .

Assume $x, y \in F_H^{+\alpha}$ and $n \in N$, then $F_H(x) \geq \alpha$ and $F_H(y) \geq \alpha$. We need to show that $x-y \in F_H^{+\alpha}$ and $n \in F_H^{+\alpha}$. Since F_H is fuzzy soft N-subgroup of G , it follows that $F_H(x-y) \geq T \{F_H(x), F_H(y)\} \geq T \{\alpha, \alpha\} \geq \alpha$ and $F_H(nx) \geq F_H(x) \geq \alpha$ which completes the proof.

Proposition 3.3: Let F_H be a fuzzy soft set over G . Then F_H is T- fuzzy soft N- subgroup of G if F_H^r is S-fuzzy soft N-subgroup of G .

Proof: Let F_H be a T- fuzzy soft N-subgroup of G , then, for all $x, y \in H$ and $n \in N$.

$$\begin{aligned} F_H^r(x-y) &= G / F_H(x-y) \geq (G / D\{F_H(x), F_H(y)\}) = T\{(G / F_H(x)), (G / F_H(y))\} \\ &= T\{F_H^r(x), F_H^r(y)\} \end{aligned}$$

$$F_H^r(nx) = G / F_H(nx) \geq (G / F_H(x)) = F_H^r(x)$$

F_H^r is S-fuzzy soft N-subgroup of G.

Proposition 3.4 : Let $F_H: X \rightarrow X^1$ be a soft homomorphism of N-subgroups. If F_H^f is T- fuzzy soft N-subgroups of X, then F_H is T- fuzzy soft N-subgroup of X^1 .

Proof: Suppose F_H is T- fuzzy soft N-subgroups of X^1 , then

(i) Let $x^1, y^1 \in X^1$, there exists $x, y \in X$ such that $f(x) = x^1$ and $f(y) = y^1$. We have

$$F_H(x^1 - y^1) = F_H(f(x) - f(y)) \geq T \{ F_H(x), F_H(y) \} = T \{ F_H^f(x), F_H^f(y) \} \text{ and}$$

(ii) $F_H(nx^1) = F_H(nf(x)) \geq F_H(f(x)) = F_H^f(x)$.

Therefore F_H is T- fuzzy soft N-subgroups of X^1 .

Proposition 3.5: Let F_H be T- fuzzy soft N-subgroups of X and F_H^* be a fuzzy soft in X given by $F_H^*(x) = F_H(x) + 1 - F_H(1)$ for all $x \in X$. Then F_H^* is T- fuzzy soft N-subgroups of X and $F_H \subseteq F_H^*$.

Proof: Since F_H is T- fuzzy soft N-subgroups of X and $F_H^*(x) = F_H(x) + 1 - F_H(1)$ for all $x \in X$.

For any $x, y \in X$, we have $F_H^*(x) = F_H(1) + 1 - F_H(1) = 1 > F_H^*(x)$ and

(i) For all $x, y \in X$, we have

$$\begin{aligned} F_H^*(x-y) &= F_H(x-y) + 1 - F_H(1) \\ &\geq T \{ F_H(x), F_H(y) \} + 1 - F_H(1) \\ &= T \{ F_H(x) + 1 - F_H(1), F_H(y) + 1 - F_H(1) \} \\ &= T \{ F_H^*(x), F_H^*(y) \} \end{aligned}$$

(ii) $F_H^*(x) = F_H(nx) + 1 - F_H(1)$

$$\geq F_H(x) + 1 - F_H(1) = F_H^*(x)$$

Therefore F_H^* is T- fuzzy soft N-subgroup of X and $F_H \subseteq F_H^*$.

Proposition 3.6: Let F_H and F_Δ be fuzzy soft sets over G, where H and Δ are N-subgroups of G and $\psi: H \rightarrow \Delta$ is an N-homomorphism. If F_H is T- fuzzy N-subgroups of G, then so is $\psi(F_H)$.

Proof: Let $\alpha_1, \alpha_2 \in \Delta$ such ψ is surjective, there exists $a_1, a_2 \in H$ such that $\psi(a_1) = \alpha_1$ and $\psi(a_2) = \alpha_2$. Thus

$$\begin{aligned}
(\Psi f_H)(x) &= T \{ F(H) / H \in H, \psi(H) = \alpha_1 - \alpha_2 \} \\
&= T \{ F(H) / H \in H, H = \psi^{-1}(\alpha_1 - \alpha_2) \} \\
&= T \{ F(H) / H \in H, H = \psi^{-1}(\psi(\alpha_1 - \alpha_2)) = A_1 - A_2 \} \\
&= T \{ F(a_1 - a_2) / \alpha_1, \alpha_2 \in \Delta, \psi(H_i) = \alpha_i, i = 1, 2 \} \\
&= T \{ (\max \{ F(a_1) / \alpha_1 \in \Delta, \psi(H_1) = \alpha_1 \}), (\max \{ F(a_2) / \alpha_2 \in \Delta, \psi(H_2) = \alpha_2 \}) \}, \\
&= T \{ \psi(F_H)(a_1), \psi(F_H)(a_2) \}
\end{aligned}$$

Now let $n \in N$ and $\alpha \in \Delta$. Since ψ is surjective, there exists $\hat{H} \in H$ such that $\psi(\hat{H}) = 0$

$$\begin{aligned}
(\psi(F_H)(n\alpha)) &= T \{ F(H) / H \in H, \psi(H) = n\alpha \} \\
&= T \{ F(H) / H \in H, H = \psi^{-1}(n\alpha) \} \\
&= T \{ F(H) / H \in H, H = \psi^{-1}(n\psi(\hat{H})) \} \\
&= T \{ F(H) / H \in H, H = \psi^{-1}(\psi(nH)) = n\hat{H} \} \\
&= T \{ F(n\hat{H}) / \hat{H} \in H, H = \psi^{-1}(\hat{H}) = \alpha \} \\
&= T \{ F(\hat{H}) / \hat{H} \in H, H = \psi^{-1}(\hat{H}) = \alpha \} \\
&= (\psi(F_H))(\alpha)
\end{aligned}$$

$\psi(F_H)$ is T -fuzzy soft N -subgroup of G .

Proposition 3.7: Let $F_H: X \rightarrow Y$ be a soft homomorphism of N -subgroups. If F_H is T -fuzzy soft N -subgroups of Y , then F_H^f is T -fuzzy soft N -subgroups of X .

Proof: Suppose F_H is T -fuzzy soft N -subgroups of Y , then for all

(i) For all $x, y \in X$, we have

$$F_H^f(x-y) = F_H(f(x) - f(y)) \geq T \{ F_H(f(x)), F_H(f(y)) \} = T \{ F_H^f(x), F_H^f(y) \} \text{ and}$$

$$(ii) F_H^f(nx) = F_H(nf(x)) \geq F_H(f(x)) = F_H^f(x).$$

Therefore F_H is intersection fuzzy soft N -subgroups of Y .

Proposition 3.8: Let F_H and F_Δ be fuzzy soft sets over G , where H and Δ are N -subgroups of G and ψ be an N -homomorphism from H to Δ . If F_Δ is T -fuzzy soft N -subgroups of G , then so is $\psi^{-1}(F_\Delta)$.

Proof: Let $a_1, a_2 \in H$, then

$$\begin{aligned} (\psi^{-1}(F_\Delta)(a_1-a_2)) &= F(\psi(a_1-a_2)) \\ &\geq T\{F(\psi(a_1)), F(\psi(a_2))\} \\ &\geq T\{ \psi^{-1}(F_\Delta)(a_1), \psi^{-1}(F_\Delta)(a_2) \} \end{aligned}$$

Now let $n \in N$ and $H \in H$, then

$$(\psi^{-1}(F_\Delta)(nH)) = F(\psi(nH)) = F(n\psi(H)) = G(\psi(H)) = \psi^{-1}(F_\Delta)(H)$$

Therefore $\psi^{-1}(F_\Delta)$ is T -fuzzy soft N -subgroups of G .

Proposition 3.9: A fuzzy soft subset ' F_H ' of G is S -fuzzy soft N -subgroups of G .

if and only if ' F_H^c ' is T -fuzzy soft N -subgroups of G .

Proof: Let ' F_H ' be a T -fuzzy soft N -subgroups of G . for all $x, y \in G$, we have

$$\begin{aligned} (i) \quad F_H^c(x-y) &= 1 - F_H(x-y) \\ &\leq 1 - T(F_H(x), F_H(y)) \\ &= 1 - T(1 - F_H^c(x), 1 - F_H^c(y)) \\ &= S(F_H^c(x), F_H^c(y)) \end{aligned}$$

$$\begin{aligned} (ii) \quad F_H^c(nx) &= 1 - F_H(nx) \\ &\leq 1 - F_H(x) = F_H^c(x) \end{aligned}$$

F_H^c is T -fuzzy soft N -subgroups of G .

Proposition 3.10: If F_H and F_Δ be two T-fuzzy soft N-subgroups of G , then $F_H \cup F_\Delta$ also T-fuzzy soft N-subgroup of G

Proof: Since H and Δ are N-subgroup of G , then $H \cap \Delta$ is an N-subgroup of G . Let $P = F_H \cup F_\Delta$, where $P(x) = F_H(x) \cup F_\Delta(x)$ for all $x \in H \cap \Delta$ not equal to empty. Then for all $x, y \in H \cap \Delta$ and $n \in N$,

$$P(x-y) = F_H(x-y) \cup F_\Delta(x-y)$$

$$\begin{aligned} &\geq T \{ T \{ F_H(x), F_H(y) \}, T \{ F_\Delta(x), F_\Delta(y) \} \} \\ &= T \{ T \{ F_H(x), F_\Delta(x) \}, T \{ F_H(y), F_\Delta(y) \} \} \\ &= T \{ P(x), P(y) \} \end{aligned}$$

$$P(nx) = F_H(nx) \cup F_\Delta(nx)$$

$$\begin{aligned} &\geq T \{ F_H(x), F_\Delta(x) \} \\ &= P(x) \end{aligned}$$

Therefore $F_H \cup F_\Delta$ also T-fuzzy soft N-subgroup of G .

Definition 3.1: A T-fuzzy soft N-subgroup F_H of G is said to be complete if it is normal and there exists $x \in X$ such that $F_H(x) = 0$.

Proposition 3.11: Let F_H be T-fuzzy soft N-subgroup of G and let w be a fixed element of G such that $F_H(1) = F_H(w)$. Define a fuzzy soft set F_H^* in G by $F_H^*(x) = F_H(x) - F_H(w) / F_H(1) - F_H(w)$ for all $x \in G$. Then F_H^* is complete T-fuzzy soft N-subgroup of G .

Proof: For any $x, y \in G$, we have

$$\begin{aligned} F_H^*(x-y) &= F_H(x-y) - F_H(x) / F_H(1) - F_H(w) \\ &\geq T \{ F_H(x), F_H(y) \} - F_H(w) / F_H(1) - F_H(w) \\ &= T \{ \{ F_H(x), F_H(y) \} - F_H(w) / F_H(1) - F_H(w) \}, \{ F_H(x), F_H(y) \} - F_H(w) / F_H(1) - F_H(w) \} \\ &= T \{ F_H^*(x), F_H^*(y) \} \end{aligned}$$

$$\begin{aligned}
 F_H^*(nx) &= F_H(nx) - F_H(x) / F_H(1) - F_H(w) \\
 &\geq F_H(x), F_H(y) \} - F_H(w) / F_H(1) - F_H(w) \} \\
 &= F_H^*(x) \text{ Therefore } F_H^* \text{ is an complete T-fuzzy soft N-subgroup of G.}
 \end{aligned}$$

Conclusion: This paper summarized the basic concepts of fuzzy soft sets. By using these concepts, we studied the algebraic properties of T-fuzzy soft N-subgroups. This work focused on fuzzy pre-image, fuzzy soft image, fuzzy soft anti-image. To extend this work, one could study the properties of M-fuzzy soft N-subgroups in other algebraic structures such as rings and fields.

References

- [1] Atagun AO,Sezgin A Soft substructures of near ring modules (submitted)
- [2]Atagun AO Soft subnear rings,soft ideals and soft N-subgroups of near rings (submitted)
- [3] Ashhan Sezgin, Akm Osman Atagun, Naim Cagman," Union soft substructure of near rings and N-groups" Neural Compt & Applic (2012) ,21(suppl): S133-S143.
- [4]U. Acar, F. Koyuncu and B. Tanay, Soft sets and soft rings, Computers and Mathematics with Applications, 59 (2010) 3458-3463.
- [5]K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems **64** (2) (1986), pp. 87–96.
- [6] H. Aktaş and N. Çağman, Soft sets and soft group, Information Science **177** (2007), pp. 2726–2735.
- [7] D. Chen, E.C.C. Tsang, D.S. Yeung and X. Wang, The parameterization reduction of soft set and its applications, Computers & Mathematics with Applications **49** (2005), pp. 757–763.
- [8] F.Feng,Y.B.Jun,X.Z.Zhao, Soft semi-rings, Computers Math. Appl.56(2008)2621-2628
- [9] G.J. Klir and B. Yuan, Fuzzy sets and fuzzy logic, Theory and Applications, Prentice-Hall Inc, New Jersey (1995)
- [10] D. Molodsov, Soft set theory–First results, Computers & Mathematics with Applications **37** (4/5) (1999), pp. 19–31.
- [11] P.K. Maji and A.R. Roy, An application of Soft set in decision making problem, Computers & Mathematics with Applications **44** (2002), pp. 1077–1083.
- [12] P.K. Maji, R. Biswas and A.R. Roy, Soft set theory, Computers & Mathematics with Applications **45** (2003), pp. 555–562.
- [13] P.K. Maji, R. Biswas and A.R. Roy, Fuzzy soft sets, Journal of Fuzzy Mathematics **9** (3) (2001), pp. 589–602.
- [14] Naim cagman, Sezgin A,Atagun AO, α -inclusions and their applications to group theory (submitted)

[15] Z. Pawlak, Rough sets, International Journal of Information and Computer Science **11** (1982), pp. 341–356.

[16] D. Pei and D. Miao, From soft sets to information systems, Granular Computing, 2005 IEEE International Conference on (2) (2005), pp. 617–621.

[17] Pilz.G (1983), Near rings, Northern Holland publishing company, Amsterdam.

[18] A.R. Roy and P.K. Maji, A fuzzy soft set theoretic approach to decision making problems, Journal of Computational and Applied Mathematics **203** (2007), pp. 412–418.

[19] L.A. Zadeh, Fuzzy sets, Information and Control **8**(1965), pp. 338–353.

Received: Nov 01, 2025

Accepted: Dec 01, 2025

Published: Dec 05, 2025