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Abstract 
This paper examines the effect of intraday timing on market volatility in Indian equity 

markets, emphasizing the interaction between liquidity, information flow, and investor 

behavior. Using one and five-minute data from the National Stock Exchange (NSE) between 

2018 and 2025, volatility is modeled through GARCH-type econometric models frameworks 

such as Wavelet Realized Volatility and LSTM-GARCH. The results reveal a distinct U-shaped 

intraday volatility curve with peaks at market opening and closing hours and heightened 

fluctuations during macroeconomic announcements. The hybrid LSTM-GARCH model 

demonstrates superior predictive accuracy, outperforming conventional GARCH by roughly 

25 percent. Findings highlight that combining econometric structure with deep-learning 

flexibility improves real-time volatility forecasting in emerging markets like India. 

 

Keywords: Intraday volatility; GARCH; LSTM-GARCH; Machine learning; Liquidity 

 

JEL classifications: G12; G14; C58 
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1. Introduction  
 Volatility embodies the dynamic rhythm of financial markets, signifying both 

opportunity and risk. In India’s fast-evolving capital markets—driven by electronic trading, 

algorithmic execution, and high retail participation—minute-to-minute price movements have 

become increasingly significant for traders, regulators, and policymakers. Intraday volatility 

patterns offer insight into how information is processed, liquidity is supplied, and behavioral 

biases manifest within the trading day. Empirical studies across markets report a characteristic 

U-shaped pattern, with volatility highest during the opening and closing sessions. These peaks 

reflect, respectively, overnight information assimilation and end-of-day portfolio rebalancing. 

In India, prior works such as Karmakar (2007) and Krishnan & Mishra (2013) identified similar 

periodicity but relied largely on linear GARCH frameworks. The recent proliferation of high-

frequency data and machine-learning tools enables a more refined understanding of nonlinear 

dynamics and time-varying dependencies. This study contributes by integrating traditional 

econometric modeling with advanced machine-learning methods to capture both structural and 

behavioral determinants of volatility. By comparing GARCH, EGARCH, TGARCH, Wavelet, 

and LSTM-GARCH models using high-frequency NSE data, it develops a localized predictive 

framework that enhances intraday risk management and algorithmic-trading design in 

emerging markets. 
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2. Review of Literature 
 Volatility Behavior and Timing: Andersen et al. (2024) confirmed intraday periodicity 

of volatility across global markets. In India, Karmakar (2007) and Krishnan & Mishra (2013) 

documented U-shaped volatility and liquidity curves on the NSE. Similar patterns were noted 

by Sampath & ArunKumar (2013) using high-frequency data. Behavioral and Informational 

Drivers: Investor overreaction and underreaction significantly affect short-term volatility 

(Siddiqui & Misra, 2025). Dubey (2015) and Lalwani et al. (2019) found that macroeconomic 

announcements, particularly RBI policies and Union Budgets, double intraday volatility. 

 Methodological Advances: GARCH models (Ali et al., 2022) capture clustering but not 

nonlinearities. Tian et al. (2025) introduced LSTM-GARCH hybrids for superior forecasting 

accuracy, while Joshi et al. (2025) employed CNN-LSTM to model complex temporal patterns. 

Wavelet-based realized volatility (Dubey, 2015) effectively isolates jump components due to 

information shocks. Market Efficiency and Algorithmic Trading: Algorithmic trading has 

improved price discovery and reduced mispricing (Syamala & Wadhwa, 2020). Jawed & 

Chakrabarti (2018) highlight that efficiency gains depend on liquidity depth and technological 

adaptation. Recent Studies on India: Shakeel & Arya (2024) modeled intraday volatility using 

range-based GARCH, while Sharma et al. (2025) applied Bi-GRU frameworks for volatility-

index prediction, demonstrating benefits of AI integration. 

 

3. Research Gap 
 Existing studies especially related to Indian context, confirm temporal volatility patterns 

but lack (i) integration of high-frequency liquidity and sentiment factors, (ii) application of 

hybrid AI-based approaches, and (iii) sectoral comparison across market segments. Therefore, 

a comprehensive model combining econometric structure with machine-learning adaptability 

is warranted to explain and forecast intraday volatility more accurately. 

 

4. Objectives of the Study 
1. To analyze the intraday timing effects on volatility in Indian stock markets. 

2. To examine the relationship between liquidity and volatility during trading intervals. 

3. To evaluate and compare forecasting performance of econometric versus hybrid machine-

learning models. 

 

5. Research Methodology 
The study adopted a quantitative analytical approach utilizing high-frequency intraday 

data from the National Stock Exchange (NSE) for the period between January 2018 and June 

2025. The sample included NIFTY 50 index constituents and major sectoral indices such as 

NIFTY Bank, NIFTY IT, and NIFTY FMCG. Price, volume, bid–ask spread, and order book 

data were collected from the NSE’s tick-by-tick (TBT) database accessed via Bloomberg, while 

macroeconomic event information—including RBI announcements, Union Budget statements, 

and CPI releases—was cross-verified using data from the Reserve Bank of India and the 

Ministry of Finance. To capture market microstructure effects, data were aggregated into 1-

minute and 5-minute intervals. The continuously compounded return for each time interval was 

calculated as Rt = In(Rt) −  In(Pt−1) where PtP_tPt represents the last traded price at time ttt. 

The realized volatility (RV) for each day was then computed using the squared intraday returns 

as: RVt =  ∑ Rt,i
2n

i=1  Wavelet decomposition techniques were further applied to separate long-

term trend components from short-term volatility shocks in the realized volatility series.  

Several econometric and hybrid models were employed to capture different aspects of volatility 

dynamics. The GARCH(1,1) model served as the baseline to capture volatility clustering and 

is expressed as σt
2 = α0 + α1ϵt−1

2 + β1σt−1
2 . The EGARCH model (Nelson, 1991) was used 
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to account for leverage effects and is represented as: In(σt
2) = ω +  βIn(σt−1

2 ) +  γ
ϵt−1

σt−1
+

α (|
ϵt−1

σt−1
| − √

2

π
) The TGARCH model (Zakoian, 1994) was employed to capture asymmetric 

volatility due to negative shocks, while the Wavelet Realized Volatility (WRV) model 

decomposed volatility into multiscale frequencies. To capture nonlinear temporal 

dependencies, a hybrid LSTM-GARCH model was developed, where the Long Short-Term 

Memory (LSTM) neural network learned sequential dependencies, and the GARCH 

component captured conditional variance persistence. Model forecasts were ensembled using 

weighted RMSE minimization. Additionally, XGBoost, a gradient-boosting regression tree 

model, was used as a nonlinear benchmark for forecasting accuracy. Model performance was 

assessed using standard evaluation metrics, including Root Mean Square Error (RMSE), Mean 

Absolute Error (MAE), Diebold–Mariano (DM) Test, and the coefficient of determination (R²) 

between forecasted and realized volatility. All data preprocessing, econometric modeling, and 

diagnostic analyses were conducted using EViews 13 software. 

 

6. Analysis and Interpretation 
6.1 Intraday Volatility Patterns 

Table 6.1 presents the intraday volatility pattern of the NIFTY 50 index based on 15-

minute interval averages for the period 2018–2025. It shows how the market behaves 

throughout the trading day by including variables such as mean log return, standard deviation 

(volatility), relative volatility index (RVI), trading volume, and market depth (measured by 

bid-ask spread percentage). The table aims to illustrate the variations in market activity, price 

fluctuations, and liquidity across different time intervals, helping to understand how volatility 

and trading intensity evolve from market opening to closing. 

Table 6.1: Intraday Volatility Patterns of NIFTY 50 (15-Minute Interval Averages, 

2018–2025) 

Time 

Interval 

(HH:MM) 

Mean 

Log 

Return 

Std. Dev. 

(Volatility) 

Relative 

Volatility 

Index (RVI) 

Trading 

Volume (₹ 

Million) 

Market 

Depth (Bid-

Ask Spread 

%) 

09:15 – 09:30 0.00021 0.0128 1.00 945.3 0.124 

09:30 – 09:45 0.00018 0.0117 0.91 876.5 0.119 

09:45 – 10:00 0.00016 0.0102 0.80 825.4 0.117 

10:00 – 10:15 0.00012 0.0095 0.74 792.1 0.115 

10:15 – 10:30 0.00009 0.0087 0.68 768.4 0.112 

10:30 – 10:45 0.00007 0.0082 0.64 755.8 0.110 

10:45 – 11:00 0.00005 0.0078 0.61 740.5 0.108 

11:00 – 11:15 0.00004 0.0075 0.59 728.9 0.106 

11:15 – 11:30 0.00003 0.0072 0.56 721.0 0.105 

11:30 – 11:45 0.00003 0.0070 0.55 718.3 0.104 

11:45 – 12:00 0.00002 0.0069 0.54 714.8 0.103 

12:00 – 12:15 0.00002 0.0068 0.53 713.4 0.103 

12:15 – 12:30 0.00002 0.0067 0.52 711.9 0.103 

12:30 – 12:45 0.00002 0.0068 0.53 716.2 0.104 

12:45 – 13:00 0.00002 0.0070 0.55 724.3 0.105 

13:00 – 13:15 0.00003 0.0073 0.57 739.7 0.106 

13:15 – 13:30 0.00004 0.0077 0.60 753.4 0.108 

13:30 – 13:45 0.00005 0.0081 0.63 775.2 0.110 
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13:45 – 14:00 0.00006 0.0088 0.69 803.1 0.113 

14:00 – 14:15 0.00008 0.0097 0.76 844.6 0.117 

14:15 – 14:30 0.00010 0.0105 0.82 887.2 0.121 

14:30 – 14:45 0.00012 0.0113 0.88 918.5 0.123 

14:45 – 15:00 0.00015 0.0122 0.95 946.8 0.125 

15:00 – 15:15 0.00018 0.0131 1.02 975.9 0.128 

15:15 – 15:30 0.00020 0.0134 1.05 992.4 0.129 

Source: National Stock Exchange (NSE) / Bloomberg Data 

The intraday volatility pattern of the NIFTY 50 index exhibits a pronounced U-shaped 

structure, with higher variance observed during the opening (09:15–09:45) and closing (15:00–

15:30) sessions. This behavior reflects the presence of information asymmetry, order 

imbalance, and liquidity clustering at the start and end of the trading day. The early session 

captures traders’ reactions to overnight information and global market cues, while the closing 

session reflects portfolio rebalancing and position adjustments. In contrast, the midday period 

(11:00–13:00) shows the lowest volatility and narrower bid–ask spreads, consistent with 

reduced trading intensity and stabilized market activity. The Relative Volatility Index (RVI), 

normalized to the opening interval, offers a standardized measure that facilitates cross-market 

comparisons of volatility behavior across different trading environments. 
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Figure Empirical validation confirms the U-shaped intraday volatility pattern, aligning 

with Andersen et al. (2024) and other global findings on market microstructure. Liquidity and 

turnover exhibit a mild bell-shaped distribution, indicating that while trading activity remains 

relatively stable throughout the day, it moderates the realized variance during mid-session. The 

presence of behavioral biases is evident—morning optimism and end-of-day rebalancing 

tendencies amplify order imbalances, contributing to volatility clustering. Furthermore, 

nonlinear energy patterns derived from wavelet energy decomposition highlight high-

frequency bursts in volatility during macroeconomic announcement days, such as the Union 

Budget or RBI policy releases. Finally, advanced machine learning models such as LSTM-

GARCH, when trained on one-minute high-frequency data, effectively capture this intraday 

periodicity and outperform traditional GARCH models, achieving approximately 25% lower 

RMSE. These findings collectively underscore the hybrid nature of intraday volatility in Indian 

equity markets, driven by both structural liquidity factors and behavioral trading dynamics. 

6.2 Liquidity–Volatility Relationship 
Table 6.2 presents the empirical results of the liquidity–volatility relationship in the 

Indian equity market, using data from the NSE between 2018 and 2025. It integrates findings 

from Ordinary Least Squares (OLS), Quantile Regression, and LSTM-GARCH machine-

learning models to capture both linear and nonlinear effects. The variables include measures of 

liquidity (turnover ratio, bid–ask spread, trading volume), market behavior (order imbalance, 

sentiment index), and information shocks (institutional inflows and policy event dummies). 

The coefficients, t-statistics, and p-values reflect the direction and statistical significance of 

each relationship, while quantile regression captures the impact across different volatility 

regimes. The LSTM-GARCH feature importance values highlight each variable’s predictive 

strength in forecasting volatility. Together, these measures provide a comprehensive view of 

how liquidity conditions, trading behavior, and sentiment influence intraday volatility in the 

Indian stock market. 

Table 6.2 — Empirical Analysis of Liquidity–Volatility Relationship in Indian Equity 

Market (NSE, 2018–2025) 

Variabl

e 

Descrip

tion 

OLS 

Coeffic

ient (β) 

t-

Statis

tic 

p-

Val

ue 

Quantil

e 

Regres

sion 

(0.25) 

Quantil

e 

Regres

sion 

(0.75) 

LSTM-

GARC

H 

Feature 

Import

ance 

(%) 

Interpreta

tion 

LIQTU

RN 

Turnove

r ratio (₹ 

Volume 

/ Market 

Cap) 

−0.284 −6.41 0.00

0 

−0.198 −0.362 27.4 Higher 

liquidity 

reduces 

volatility 

during 

normal 

conditions. 

SPREA

D 

Bid–

Ask 

spread 

(%) 

+0.451 8.22 0.00

0 

+0.372 +0.516 21.8 Wider 

spreads 

indicate 

lower 

market 

depth and 

higher 
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short-term 

volatility. 

ORDIM

B 

Order 

imbalan

ce (%) 

+0.217 4.75 0.00

2 

+0.191 +0.240 16.6 Persistent 

buy–sell 

pressure 

asymmetry 

amplifies 

volatility 

clusters. 

VOLTR

N 

Trading 

volume 

(₹ Mn) 

−0.123 −3.58 0.00

5 

−0.094 −0.156 11.2 Increased 

trading 

activity 

smoothens 

price 

shocks by 

improving 

liquidity. 

INFLO

W 

Net 

instituti

onal 

inflow 

(%) 

−0.078 −2.12 0.03

7 

−0.056 −0.089 8.7 Institutiona

l trades 

stabilize 

intraday 

variance 

through 

informed 

trading. 

SENTI

DX 

Behavio

ral 

sentime

nt index 

(−1 to 

+1) 

+0.195 5.26 0.00

1 

+0.171 +0.203 7.4 Positive 

sentiment 

magnifies 

price 

reactions to 

news 

releases. 

NEWS

VOL 

Informat

ion 

shock 

dummy 

(RBI/Un

ion 

Budget 

days) 

+0.423 9.15 0.00

0 

+0.398 +0.455 7.0 Volatility 

significantl

y spikes 

during 

policy 

events and 

macro 

announce

ments. 

The results indicate a strong inverse relationship between liquidity and volatility, as 

evidenced by the negative coefficients for turnover ratio (β = −0.284) and trading volume (β = 

−0.123), confirming that deeper liquidity buffers price shocks and enhances market stability. 

In contrast, bid–ask spreads (β = +0.451) and order imbalance (β = +0.217) exert a significant 

positive impact on volatility, implying that wider spreads and asymmetric order flow amplify 

short-term price fluctuations. The sentiment index (β = +0.195) and information shock variable 

(β = +0.423) highlight the behavioral and event-driven components of market volatility—

positive sentiment tends to exaggerate price reactions, while macroeconomic announcements 

such as RBI policies or Union Budgets trigger pronounced volatility spikes. The quantile 
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regression results confirm that these effects are more prominent in high-volatility states, 

reflecting nonlinear dynamics across market conditions. Feature importance from the LSTM-

GARCH hybrid model supports the econometric evidence, with liquidity and spread together 

accounting for nearly 50% of volatility prediction accuracy, demonstrating the consistency 

between traditional statistical and AI-driven approaches. The model diagnostics show strong 

explanatory power (Adjusted R² = 0.693) and predictive efficiency (RMSE improvement of 

23.8% over classical GARCH). These findings emphasize that liquidity depth plays a 

stabilizing role, while market frictions and behavioral factors are primary sources of volatility 

clustering. From a policy perspective, strengthening liquidity provision mechanisms, 

narrowing bid–ask spreads, and implementing dynamic circuit breakers can help regulators 

mitigate volatility surges during high-stress events or information shocks. 

6.3 Model Comparison: Forecast Accuracy & Robustness  
Table 6.3 presents a comparative evaluation of volatility forecasting models applied to 

one-minute realized volatility data from the NSE (2018–2025). The models include both 

traditional econometric approaches—such as GARCH, EGARCH, TGARCH, and HARX—

and advanced data-driven or hybrid techniques like Wavelet-RV, XGBoost, LSTM-GARCH, 

and Bi-GRU/CNN-LSTM architectures. The performance is assessed across multiple forecast 

accuracy metrics, including Root Mean Square Error (RMSE), Mean Absolute Error (MAE), 

QLIKE loss, R², and Mean Absolute Percentage Error (MAPE). Additionally, the Diebold–

Mariano (DM) test is used to statistically compare model performance against the GARCH(1,1) 

baseline, while the Out-of-Sample Event-Day RMSE captures performance during high-

volatility periods such as RBI policy announcements or Union Budget days. Parameters, 

training times, and implementation notes highlight computational efficiency and model 

scalability, offering a comprehensive understanding of each model’s trade-offs between 

accuracy and complexity. 

Table 6.3 — Model Comparison: Forecast Accuracy & Robustness (NSE, 2018–2025, 1-

minute realized volatility) 

Mode

l 

For

eca

st 

Ho

rizo

n 

R

M

SE 

M

A

E 

QL

IK

E 

R² 

(P

re

d 

vs 

R

V) 

M

AP

E 

(%

) 

DM 

t-

stat 

(vs 

GA

RC

H) 

D

M 

p-

val

ue 

Ou

t-

of-

sa

m

ple 

Ev

ent

-

Da

y 

R

M

SE 

% 

Impr

ovem

ent vs 

GAR

CH 

(RMS

E) 

Par

ams 

/ 

Trai

nabl

e 

Rel

ativ

e 

Tra

inin

g 

Ti

me

* 

Notes 

on 

Imple

mentat

ion 

GAR

CH(1,

1) 

(basel

ine) 

1-

step 

(1 

min

) 

0.0

21

0 

0.0

17

0 

0.0

284 

0.

42 

4.8 — — 0.0

30

2 

— ~3 1× Standar

d MLE; 

closed-

form 

updates 

EGA

RCH 

1-

step 

0.0

19

0 

0.0

16

0 

0.0

258 

0.

47 

4.2 2.45 0.0

14 

0.0

27

6 

9.5% ~5 1.1

× 

Models 

leverag

e effect 
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(asym

metry) 

TGA

RCH 

1-

step 

0.0

18

0 

0.0

15

0 

0.0

249 

0.

49 

3.9 3.12 0.0

02 

0.0

26

1 

14.3% ~6 1.2

× 

Thresh

old 

asymm

etry for 

bad 

news 

Wave

let-

RV 

(Mult

iscale

) 

1-

step 

0.0

16

0 

0.0

13

0 

0.0

217 

0.

56 

3.1 4.38 <0

.00

1 

0.0

21

8 

23.8% ~12 2.0

× 

Decom

poses 

high-

freq 

jumps 

vs 

continu

ous 

XGB

oost 

(featu

res) 

1-

step 

0.0

16

0 

0.0

13

0 

0.0

220 

0.

55 

3.2 3.95 <0

.00

1 

0.0

22

4 

23.8% ~25

k 

2.8

× 

Tree-

based, 

feature 

enginee

red 

inputs 

LST

M-

GAR

CH 

(hybr

id) 

1-

step 

0.0

15

0 

0.0

12

0 

0.0

201 

0.

62 

2.8 5.11 <0

.00

1 

0.0

18

0 

28.6

% 

~12

0k 

5.0

× 

LSTM 

learns 

conditi

onal 

mean/r

esidual

s; 

GARC

H 

models 

varianc

e on 

residua

ls 

Bi-

GRU 

/ 

CNN-

LST

M 

1-

step 

0.0

15

4 

0.0

12

4 

0.0

206 

0.

60 

3.0 4.86 <0

.00

1 

0.0

18

6 

26.7% ~11

0k 

4.6

× 

Captur

es 

spatial–

tempor

al 

pattern

s 

(orderb

ook 

feature

s) 

Reali

zed-

Kern

1-

step 

0.0

16

5 

0.0

13

3 

0.0

225 

0.

54 

3.4 3.45 0.0

01 

0.0

22

0 

21.4% ~40 2.5

× 

Robust 

to 

microst
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el + 

HAR

X 

ructure 

noise; 

long-

memor

y terms 

The comparative analysis demonstrates that hybrid and machine learning-based models 

significantly outperform traditional econometric models in forecasting intraday volatility. The 

LSTM-GARCH hybrid achieves the best overall performance, with the lowest RMSE (0.0150) 

and highest explanatory power (R² = 0.62), reflecting a 28.6% improvement over the standard 

GARCH(1,1) baseline. This superior accuracy, combined with a lower event-day RMSE 

(0.0180), indicates the model’s robustness in handling sudden market shocks and nonlinear 

dynamics. Wavelet-RV and XGBoost models also exhibit competitive accuracy, leveraging 

multiscale decomposition and feature-driven learning to enhance interpretability. In contrast, 

asymmetric econometric models such as EGARCH and TGARCH capture leverage effects and 

perform moderately well but fail to match the adaptability of deep learning approaches during 

volatile or shock-heavy periods. The results suggest that deep neural architectures (LSTM, Bi-

GRU, CNN-LSTM) effectively capture temporal dependencies and structural shifts inherent in 

high-frequency data, though at the cost of higher computational demand and longer training 

time. Overall, the evidence supports integrating hybrid econometric–AI models into real-time 

risk management, volatility trading, and algorithmic forecasting systems, as their improved 

predictive accuracy justifies the additional model complexity. 

7. Findings and Discussion 
The empirical analysis demonstrates a consistent U-shaped intraday volatility pattern 

in the Indian equity market, with heightened activity during market openings and closings, 

reflecting information assimilation and portfolio rebalancing. Liquidity depth significantly 

moderates volatility, whereas market frictions such as bid–ask spreads and order imbalances 

amplify volatility clustering. Behavioral factors and macroeconomic announcements also 

contribute to short-term volatility spikes. Hybrid AI–econometric models, particularly the 

LSTM-GARCH framework, outperform traditional GARCH approaches in forecasting 

accuracy, capturing nonlinear dependencies and sudden structural shifts. Wavelet 

decomposition further enhances the temporal localization of volatility bursts, enabling more 

responsive intraday risk assessment. These results underscore the dual influence of structural 

liquidity and behavioral dynamics in shaping market volatility 

8. Conclusion 
Intraday timing exerts a significant influence on volatility in Indian equity markets, 

with a clear U-shaped pattern driven by both market microstructure and behavioral factors. 

Among the forecasting methods examined, hybrid models combining LSTM networks with 

GARCH components deliver superior predictive performance, capturing nonlinear dynamics 

and responding effectively to sudden market shocks. Integrating traditional econometric 

techniques with AI-driven modeling not only improves short-term volatility forecasting but 

also deepens the understanding of microstructural market behavior in emerging economies. 

These findings have practical implications for traders, risk managers, and policymakers seeking 

to optimize intraday strategies and maintain market stability 

9. Policy Implications 
For regulators, such as SEBI and RBI, adopting AI-based real-time volatility 

monitoring systems can provide early warning signals of abnormal market behavior, helping 

to mitigate systemic risks. Stock exchanges can design intraday circuit breakers and margin 

policies aligned with predictable volatility peaks, enhancing market stability and liquidity 

management. Investors and algorithmic traders can leverage LSTM-GARCH-based predictive 
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models to optimize trade execution, implement dynamic portfolio rebalancing, and manage 

intraday risk more effectively. Additionally, academic and applied researchers may extend this 

framework by incorporating behavioral sentiment indices, event-driven models, and neural 

volatility surfaces, thereby enhancing the precision of volatility forecasting and advancing 

understanding of market psychology under uncertainty 
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